Sharnhagya University Kalahuragi

-		Sharindasva University, Kalabura	gı.	
Course Tit	le:	Engineering Mathematics-1 for CSS		
Course Co	de:	24MATS101	CIE Marks	50
Course Ty	ре	Integrated	SEE Marks	50
(Theory/F	ractical/Integrated)	GIV2NW	Total Marks	100
Teaching H	lours/Week (L: T:P)	3:2: 0	Exam Hours	03
Total Hour	rs of Pedagogy	36 Hours Theory and 12 Hours	Credits	04
	0	Tutorial/practice	10	
Course obj	jectives: The goal of the course E	Ingineering Mathematics-1 for CSS (24MATS101)	is to	
• Fa	amiliarize the importance of succes	sive differentiation and partial differentiation.		
• A	pply the knowledge of polar curves	to trace different types of curves.	011	
• A	pplications of first order first degre	e differential equations.		
• Te	o develop the knowledge of matrice	s and linear algebra in a comprehensive manner.		
• A	pply the modular arithmetic to com	puter algorithms.		
Teaching-	Learning Process		PIO	
Pedagogy	(General Instructions):			
These are	sample Strategies, which teache	rs can use to acce <mark>lerate the attainment</mark> of the vario	ou <mark>s c</mark> ourse outcomes.	
1. In	addition to the traditional lectur	e <mark>m</mark> ethod, differe <mark>nt types of innovative</mark> teaching m	nethods may be adopted so	that the delivered
les	sons shall develop student's the	oretical and applied mathematical skills.		
2. Sta	ate the need for Mathematics wit	h Engineering Studies and Provide real-life examp	oles.	
3. Su	pport and guide the students for	self–study.		
4. Sti	ident progress can be monitored	l through internal assessment by the course teach	er.	
5. Tw	vo assignment problems on each	module.		
6. En	courage the students for group l	earnin <mark>g to</mark> improve their creative and analytical sk	cills.	
7. Sh	ow short related video lectures i	n the following ways:		
8. As	an introduction to new topics (p	pre-lecture activity).		
9. As	a revision of topics (post-lecture	e activity).		
10. As	additional examples (post-lectu	re activity).		
11. As	an additional material of challer	nging topics (pre-and post-lecture activity).		
12. As	a model solution of some exerci	ses (post-lecture activity).		
Course ou	itcome (Course Skill Set)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
At the end	of the course the student will be	e able to:		1
CO1	Understand the concepts of pa	artial differentiation to compute rate of change of	multivariate functions.	
CO2	Learn the notion of calculus to	o solve problems related to polar curves.		
CO3	Analyse the solution of linear	and non-linear ordinary differential equations.		
CO4	Make use of matrix theory for	solving for system of linear equations and compu	te eigen values and eigen v	ectors by using
	computational software.			
CO5	Get acquainted and to apply n	nodular arithmetic to computer algorithms		

Get acquainted and to apply modular arithmetic to computer algorithms CO5

Bloom's level	of the course outcome	s:	0.0			
			Bloom's Level	l		
CO#	Remember (L1)	Understand (L2)	Apply (L3)	Analyse (L4)	Evaluate (L5)	Create (L6)
C01			\checkmark			
CO2				(
CO3		\checkmark		6		
CO4				alla		
CO5				のあ		

Course Articulation Matrix / Course mapping:

CO#	P01	P02	P03	P04	P05	P06	P07	P08	604	P010	P011	P012
CO1	3	1	13		An		R		Z			1
CO2	3	1	12	1	11-13		EN COL		1			1
CO3	3	3	20	15	AN AN		1		m			1
CO4	3	2	3				14					1
CO5	3	2			1			0				1
AVG	3	1.8		0	000		20				0	1

Note: 1-Low mapped, 2-Medium mapped, 3-High mapped

MODULE-1 SUCCESSIVE AND PARTIAL DIFFERENTIATION.

Introduction of Successiveand partial differentiation in CS Engineering applications.

Determination of nth order derivatives of Standard functions - Problems. Leibnitz's theorem (without proof) - problems

Definition and simple on partial differentiation problems, Euler's theorem problems, total derivatives, partial differentiation of composite functions, Jacobians-definition and problems, extreme values of functions of two variables.

Self-study / Tutorial: Python program :Evaluating the limits, finding the Partial derivatives of a given function, finding partial derivatives and Jacobian and plotting the graph.

Applications: Computation of stress and strain, Errors and approximations, Estimating the critical points and extreme values. (RBT Levels: L1, L2 and L3) (10 Hours)

MODULE-2 : POLAR CURVES

Introduction to polar coordinates and curvature and its related applications CS Engineering .

angle between the radius vector and tangent, angle between two curves, Pedal equation for polar curves. Derivative of arc length Cartesian, Parametric and Polar forms (without proof) - problems. Curvature and Radius of Curvature – Cartesian, Parametric, Polar and Pedal forms and problems.

2024

Self-study / Tutorial: Python program :2D plots for Cartesian and polar curves, finding angle of intersection between two polar curves and finding radius of curvature of a given curve.
Applications: Angle of elevation and survey engineering.
(RBT Levels: L1, L2 and L3) (09 Hours)
MODULE- 3: LINEAR AND NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS
Introduction to first order ordinary differential equations pertaining to the applications for CS Engineering.
Solution of first order and first degree differential equations – Exact, reducible to exact and Bernoulli's differential equations. Applications
of ODE's – Orthogonal trajectories, Rate of Decay and growth, L-R and C-R circuits. Problems.
Nonlinear differential equations : Equations solvable for p, equations solvable for y, equations solvable for x, general and singular
solutions, Clairauit's equations and equations reducible to Clairauit's form.
Self-study / Tutorial: Python program :Solution of first order differential equation and plotting the graphs
Applications of ordinary differential equations: L-R and C-R circuits, Newton's law of cooling, Conduction of heat.
(RBT Levels: L1, L2 and L3) (10 Hours)
MODULE- 4: LINEAR ALGEBRA
Introduction of liner algebra related to CS Engineering applications.
Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-Jordan
method and approximate solution by Gauss <mark>-S</mark> eidel method. Eigen values and Eigen vectors, Rayleigh's power method to find the dominant
Eigen value and Eigen vector. Problems
Self-study / Tutorial:Python Programs :Inverse of asquarematrixbyCayley-Hamilton theorem.Python program :Evaluating the rank of
matrix, a systemof linear equations byGauss-Seidelmethod.
Applications : Optimum solution
(RBT Levels: L1, L2 and L3) (09 Hours)
MODULE- 5: MODULAR ARITHMETIC
CHER AND DISCHT
Introduction of modular arithmetic and its applications in Computer Science and Engineering. Introduction to Congruences, Linear
Congruences, The Remainder theorem, Solving Polynomials, Linear Diophantine Equation, System of Linear Congruences, Euler's
Theorem, Wilson Theorem and Fermat's little theorem. Applications of Congruences-RSA algorithm.
Self-study / Tutorial: Python program : Divisibility GCD, Properties of Prime Numbers, Fundamental theorem of Arithmetic
Applications: Cryptography encoding and decoding RSA applications in public key encryption
(RBT Levels: 1.1 1.2 and 1.3)(10 Hours)
Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing
marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum passing marks for the SEE is 35% of the
maximum marks out of 100 marks (18 marks out of 50 marks).
A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course

if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination (SEE), and a minimum of 35% (35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the CIE shall be 50 marks.

The CIE marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:

- Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with the same syllabus of CIE-2 (on the need basis of students).
- Average of best two performances of the Internaltests shall be considered for 25 marks.
- Session wise assignments for 10 marks
- •For relevant other activities (Eg. Seminar, field work, Math Lab, activity report etc) 10 marks
- •Attendance 5 marks (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)

<u>Semester End Examination (SEE)</u>

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Text Books

- 1. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- **4. C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw–Hill Book Co., New York, 6thEd., 2017.
- 5. C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 7. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018

Course Title:	Engineering Mathematics-1 for E	ES	
Course Code:	24MATE101	CIE Marks	50
Course Type(Theory/Practical/Integrated)	Integrated	SEE Marks	50
	21 GYO	Total Marks	100
Teaching Hours/Week (L: T:P)	3:2:0	Exam Hours	03
Total Hours of Pedagogy	36 Hours Theory and 12 Hours	Credits	04
	Tutorial/practice	Sal	

Course objectives: The goal of the course Engineering Mathematics-1 for EES(24MATE101) is to

- Familiarize the importance of linear and non-linear differential equations.
- Analyse engineering problems applying Partial derivatives and understand the value of limit (continuity) of function by using indeterminate forms.
- Apply the knowledge of polar curves to trace different types of curves.
- Applications of matrices and linear algebra in a comprehensive manner.
- To develop the knowledge series expansions.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. Student progress can be monitored through internal assessment by the course teacher.
- 5. Two assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show related short video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Analy	se the	solution	of linear	and non-linear	ordinary	differential	equations.
	Ŧ	.1		1 1 1 00			C 1	6 1.1

CO2 Learn the notion of partial differentiation to compute rate of change of multivariate functions.

CO3	Learr	n the not	tion of c	alculus	to solve	proble	ms rela	ted to p	olar curv	ves.			
CO4	Make	use of r	natrix t	heory fo	or solvin	g for sy	stem of	linear	equation	is and o	compute	Eigen v	alues and
	Eigen	vectors	s by usir	ng comp	outation	al softw	are.	-	-	1			
CO5	Solve	the eng	ineerin	g proble	ems of se	equence	e and se	ries.	(0)	115	7		
Bloom's	level of	f the co	urse ou	tcomes	5:	9		24	20		P		
					1	12	Bloom	's Leve		2	5		
CO#		Remember (L1)			Understand (L2)			y	Analy	/se	Evalu	ate	Create
									(L4)		(L5)		(L6)
C01								15	SH.			~	
CO2								~	CITA	RA		01	
CO3						13		63	S.C.		8		
CO4				4		S.		E A	"The		70		-
CO5						3		0	14		0		0.0
				0		15						R	0
									6 G 6	2			
Course A	rticula	tion Ma	atrix / (Course	mappin	g:	1	× 1	26	-		-	-
CO#	Ţ	5	ŝ	4	ы	9	-	œ	6	10	11	[2	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	0	0	0	
					0	·	de fi	1.00	a second		-	77	4
C01	3	1				3	1.1.23	1		1	-	1	
CO2	3	1	0			Car	der.	1		3	1	1	0
CO3	3	3	Q			Xo	0	632.0	ಪರ್ವೇ	3	Y	1	0
CO4	3	2	5				4				1	1	7
CO5	3	2	to				AC	100	un nis	CIPTE		1	
AVG	3	1.8					1P		10-1	R		1	
Note: 1-L	ow maj	pped, 2-	Mediun	n mapp	ed, 3-Hig	gh mapp	bed	N/	AVO	S	9		
	N	10DULE	E-1 LINE	EAR AN	D NON-	LINEAF	R ORDI	VARY E	DIFFERE	NTIAL	EQUATI	ONS	_
Introduc	tion to	first or	der ord	linary	differen	tial eq	uations	perta	ining to	the ap	plication	ns for E	E & EC
Engineer	ring.		1.0	116	1.00		- ac		221014	SC 164	1	6	
Solution	of first	t order	and fir	st deg	ree diffe	erential	equati	ons –	Exact, re	educibl	le to exa	act and	Bernoulli's
aliferenti	al equa	itions. A	ppiicati	ions of	ODE'S -	Orthog	onal tra	ijectori	es, Rate	of Dec	ay and g	rowth,	ь-к and с-к
Nonlineau	robien r diffor	15. ontial o	austion	e · Fau	ations s	olvable	for n	quatio	ne colval	ale for	v equat	ions so	lvable for v
general a	nd sing	ular sol	utions (3 . Equ Clairaut	's equat	ions and	d equat	ions re	ducible t	o Claira	y, equal aut's form	n	IVADIC IUI X,
Self-Stud	v / Tu	torial	Pvthon	Progra	m:Solut	tion of	first or	der dif	ferential	equati	on and r	n. Notting	the granhs
solving th	ie Linea	ar differ	ential e	quation	S.			act uill		Squut	en ana p		ene Brapins,

Applications of ordinary differential equations: L-R and C-R circuits, Newton's law of cooling, Conduction
heat.
(RBT Levels: L1, L2 and L3) (10 Hours)
MODULE-2: INDETERMINATE FORMS AND PARTIAL DIFFERENTIATION
Introduction of Indeterminate forms and partial differentiation in EE & EC Engineering applications.
Indeterminate forms – L-Hospital rule. Problems.
Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxim
and minima for a function of two variables. Problems.
Cliffinds (Terrardal Dather Descent F. L. et al., Parts Caller de Datiel de Datiel de Caller
Self-Study / Iutorial: Python Program: Evaluating the limits, finding the Partial derivatives of a giv
function, finding partial derivatives, Jacobian and plotting the graph.
Applications: Applications of maxima and minima in EE & EC Engineering.
(PBT Lovels: 11 12 and 12) (10 Hours)
MUDULE-5 : FULAR CURVES
Delar acordinates, Delar survey, angle between the redius visitor and tangent angle between two survey. Dec
Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pet
equations. Cui vature and Radius of cui vature - Cartesian, Parametric, Polar and Pedariornis. Problems only.
Solf Study / Tutorial: Bythan Brogram, 2D plate for Cartesian and palar survey finding of intersecti
NOTESTICAL PRODUCTION PRODUCTION PRODUCTION $(1,1)$
between two polar curves, finding radius of curvature of a given curve
between two polar curves, finding radius of curvature of a given curve.
between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3)
Sen-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours)
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to FE & EC Engineering applications
Sen-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Flementary row transformation of a matrix. Bank of a matrix. Consistency and Solution of system of line.
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Figen values and Fig
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigen vector. vectors. Bayleigh's power method to find the dominant Figen value and Figen vector.
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix. Solution of system of equations
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method.
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis. Markov Analysis. Critical point of a networksystem.
Self-Study / Tutorial: Python Program:2D plots for cartesian and point curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA (09 Hours) Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution.
Self-Study / Tutorial: Python Program:2D plots for cartestan and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution. (RBT Levels: L1, L2 and L3)
Self-Study / Tutorial: Python Program:2D plots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix , Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution. (RBT Levels: L1, L2 and L3) (09 Hours)
Self-Study / Tutorial: Python Program:2D plots for Cartestain and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 5: SEQUENCE AND SERIES Introduction of Sequence and series in EE & EC Engineering
Self-Study / Tutorial: Python Program:2D piots for Cartesian and point curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA (09 Hours) Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 5: SEQUENCE AND SERIES Introduction of Sequence and series in EE & EC Engineering Infinite series, tests for convergence/divergence, Limit comparison test, Ratio test, root test, Raabe's test
Self-Study / Tutorial: Python Program:2D piots for Cartesian and polar curves, finding of intersection between two polar curves, finding radius of curvature of a given curve. Applications: Communication signals, manufacturing of microphones and Image processing. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 4: LINEAR ALGEBRA Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of line equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eig vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study / Tutorial: Python Program:Evaluating the rank of matrix ,Solution of system of equations Gauss-Siedal method. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networksystem. Optimum solution. (RBT Levels: L1, L2 and L3) (09 Hours) MODULE- 5: SEQUENCE AND SERIES Introduction of Sequence and series in EE & EC Engineering Infinite series, tests for convergence/divergence, Limit comparison test, Ratio test, root test, Raabe's te Alternating series, Absolute convergence and conditional convergence.

Self-Study / Tutorial: Python Program: Finding the sum of the series up to infinity, finding the given series convergent and divergent.

Applications: Sequence and Series expansion in communication signals.

(RBT Levels: L1, L2 and L3)

(10 Hours)

2024

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum passing marks for the SEE is 35% of the maximum marks out of 100 marks (18 marks out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination (SEE), and a minimum of 35% (35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the CIE shall be 50 marks.

The CIE marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:

- Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with the same syllabus of CIE-2 (on the need basis of students).
- Average of best two performances of the Internaltests shall be considered for 25 marks.
- Session wise assignments for 10 marks
- •For relevant other activities (Eg. Seminar, field work, Math Lab, activity report etc) -10 marks
- •Attendance (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)- 5 marks

Semester End Examination (SEE)

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources: Text Books

- 3. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- **4. E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018. **Reference Books**
- 8. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 9. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.

- **10.** N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- **11. C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw–Hill Book Co., New York, 6thEd., 2017
- **12. C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- **13. James Stewart: "**Calculus" Cengage Publications, 7thEd., 2019.
- 14. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018

Sharnbasva University, Kalaburagi.

Course Title:	Engineering Mathematics-1	for CES.	
Course Code:	24MATC101	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/Week (L: T:P)	3:2:0	Exam Hours	03
Total Hours of Pedagogy	36 Hours Theory and 12	Credits	04
	Hours Tutorial/practice		

Course objectives: The goal of the course Engineering Mathematics-1 for CES.(24MATC101) is to

- Familiarize the importance of polar curves to trace different types of curves
- Analyse engineering problems applying Partial derivatives and understand the value of limit (continuity) of function by using indeterminate forms.
- Apply the knowledge of series expansion and vector calculus.
- Applications of first order first degree differential equations.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

Teaching-Learning Process

Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. Student progress can be monitored through internal assessment by the course teacher.
- 5. Two assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As are vision of topics (post-lecture activity).

- As additional examples (post-lecture activity).
- As an additional material of challenging topics (pre-and post-lecture activity).
- As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Understand the concepts of calculus to solve problems related to polar curves.
CO2	Learn the notion of partial differentiation to compute rate of change of multivariate functions.
CO 3	Apply multivariate calculus to solve engineering problems.
CO4	Analyse the solution of linear ordinary differential equations and reduction formula.
CO5	Make use of matrix theory for solving for system of linear equations and compute Eigen values and
	Eigenvectors by using computational softwares.

Bloom's level of the course outcomes:

	Bloom's Level										
CO#	Remember (L1)	Understand (L2)	Apply (L3)	Analyze (L4)	Evaluate (L5)	Create (L6)					
C01				Z							
CO2			\checkmark	11							
CO3		\checkmark	\checkmark	E							
CO4				2							
CO5			\checkmark	5	62 <u>6</u> 6						

Course Articulation Matrix / Course mapping :

CO#	P01	P02	P03	P04	PO5	P06	P07	P08	909	P010	P011	P012
CO1	3	1					201 201	27				1
CO2	3	1	6		12				9	\$1	6	1
CO3	3	3			5	3	0/	15	7			1
CO4	3	2				20		4	D			1
CO5	3	1			1.02	y y	60	5				1
AVG	3	1.6					- Y					1
Note: 1-L	low maj	pped, 2-	Medium	n mappe	d, 3-Hig	gh mapp	ed					

2024

MODULE-1 : POLAR CURVES

Introduction to polar coordinates and curvature in Civil Engineering applications.

Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems.

Self-study / Tutorial:Python program :2D plots for Cartesian and polar curves, finding angle of intersection between two polar curves and finding radius of curvature of a given curve.

Applications: Angle of elevation and survey engineering.

(RBT Levels: L1, L2 and L3) (10 Hours)

MODULE-2 : INDETERMINATE FORMS AND PARTIAL DIFFERENTIATION

Introduction to Indeterminate forms and Partial differentiation relating to Civil Engineering.

Indeterminate forms – L -Hospital rule. Problems.

Partial differentiation, total derivative - differentiation of composite functions. Jacobian's and problems. Maxima and minima for a function of two variables. Problems.

Self-study / Tutorial: Python program :Evaluating the limits, finding the Partial derivatives of a given function, finding partial derivatives and Jacobian's and plotting the graph.

Applications: Computation of stress and strain, Errors and approximations, Estimating the critical points and extreme values.

(RBT Levels: L1, L2 and L3)

(09 Hours)

MODULE-3: SERIES EXPANSION AND VECTOR DIFFERENTIATION

Introduction to Series expansion and Vector Calculus in Civil Engineering applications.

Taylor's and Maclaren's series expansions for one variable (statements only) - Problems

Vector Differentiation: Scalar and vector fields. Gradient, directional derivative, divergence and curl - physical interpretation, solenoid and irrotational vector fields. Problems.

Self-study / Tutorial:Python program :Find curl of vector point, gradient of scalar point and divergence.

Applications: Heat and mass transfer, oil refinery problems, environmental engineering.

(RBT Levels: L1, L2 and L3)

MODULE- 4: BASIC CALCULUS (DIFFERENTIATION AND INTEGRATION)

Introduction to first order ordinary differential equations pertaining to the applications for Civil engineering. Exact and reducible to exact differential equations -Integrating factors type-1. , linear and reducible linear. Applications of ODE's – Orthogonal trajectories, Conduction of heat, Newton's law of cooling. Problems.

Reduction formula, $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$, $\int_0^{\frac{\pi}{2}} \cos^n x \, dx$, $\int_0^{\frac{\pi}{2}} \tan^n x \, dx$ and its examples.

Self-study / Tutorial:Python program :Solution of first order differential equation and plotting the

graphsApplications of ordinary differential equations: Rate of Decay and growth.

(RBT Levels: L1, L2 and L3)

(10 Hours)

(10 Hours)

MODULE- 5: LINEAR ALGEBRA
IntroductionoflineralgebrarelatedtoCivilEngineeringapplications.
Elementary row transformation of a matrix, Rank of a matrix. Consistency and solution of a systemof linear equations -
Gauss-Jordan method and approximate solution byGauss-
Seidelmethod. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector.
Self-study / Tutorial:Python Programs : Inverse of asquarematrixbyCayley-Hamilton theorem.Python program
:Evaluating the rank of matrix, a systemof linear equations by Gauss-Seidelmethod.
Applications of Linear Algebra: Optimum solution.
(RBT Levels: L1, L2 and L3) (09 Hours)
Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The
minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum
passing marks for the SEE is 35% of the maximum marks out of 100 marks (18 marks out of 50 marks).
A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each
subject/ course if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination
(SEE), and a minimum of 35% (35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal
Evaluation) and SEE (Semester End Examination) taken together.
<u>Continuous Internal Evaluation (CIE):</u>
The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the CIE shall be 50 marks
The CIF marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:
• Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on
the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with
the same syllabus of CIE-2 (on the need basis of students).
 Average of best two performances of the Internaltests shall be considered for 25 marks.
•Session wise assignments for 10 marks
•For relevant other activities (Eg. Seminar, field work, Math Lab, activity reportetc) 10 marks
•Attendance 5 marks (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)
Semester End Examination (SEE)
• The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
The question paper will have ten full questions carrying equal marks.
Each full question carries 20 marks.
There will be two full questions (with a maximum of three sub questions) from each module
Each full question will have sub questions covering all the topics under a module.
• The students will have to answer five full questions, selecting one full question from each module.
000000

2024

Suggested Learning Resources:

Text Books

- 5. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 6. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 15. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 16. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- **17. N.P Bali and Manish Goyal:** "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- **18. C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw–Hill Book Co., New York, 6thEd., 2017.
- **19. C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 20. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 21. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018

Course Title:	Engineering Physics	for CSS	7
Course Code:	24PHYS102	CIE Marks	50
Course Type (Theory/Practical)	12 118	SEE Marks	< 50
	Theory	Total Marks	100
Teaching Hours/Week (L+T)	3+1	Exam Hours	03
Total Hours of Pedagogy	50 hrs	Credits	04

Course objectives

- Gain a fundamental understanding of lasers and Optical fibers and their applications in Engineering.
- Develop fundamental understanding of quantum mechanics and their applications.
- Acquire an understanding of electrical properties of materials, especially superconductors.
- Gain fundamental understanding of the principles of quantum information and quantum computing including their concepts and applications.
- Gain an understanding of quantum gates and oscillations focusing on their fundamental principles and practical applications.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective

- 1. Flipped Class
- 2. Smart Class Room
- 3. Blended Mode of Learning
- 4. Interactive Simulations and Animations
- 5. Assignments based learnings

Sharnbasva University, Kalaburagi.

6. NPTEL and Other Videos for theory topics
/. Lao Experiment videos (10 Hours)
PHOTONICS
LASER: Basic properties of a LASER beam Interaction of Radiation with Matter Finstein's A and B Coefficients Laser Action &
Population Inversion Metastable State Requisites of alaser system Construction and working of a Semiconductor Diode Laser (Ga-As)
Applications: Barcodescanner CD writing/reading Numerical Problems
Optical Fiber : Principle and structure Acceptance angle and Numerical Aperture (NA) Expression for NA (derivation)& Numerical
Problems Types of Optical Fibers Attenuation and Fiber Losses Applications of Optical Fibers' Local Area Network (LAN) and Fiber
Optic Communication (Basics of point to point communication system).
Prerequisite: Properties of light
Self-learning: Total Internal Reflection & Propagation Mechanism (Optical Fibers)
Module-2 (10 Hours)
QuantumMechanics:
Inadequacies of Classical Mechanics (Blackbody radiation & Photo electric effect), de Broglie Hypothesis and Matter Waves, de Broglie
wavelength of electrons (derivation), Heisenberg's Uncertainty Principle and its application (Non existence of electron inside the nucleus-
Non Relativistic) & Numerical Problems, Wave Function, Physical Significance of a wave function, Time independent Schrodinger wave
equation, Eigen functions and EigenValues, Motion of a particle in a one dimensional potential well of infinite depth.
Pre requisite: Wave–Particle dualism;
Self-learning: deBroglie Hypothesis
Module-3 (10 Hours)
Electrical Conductivity in metals :
Concept of Resistivity and Mobility, Numerical Problems on resistivity and mobility, Assumptions and failures of Classical Free Electron
Theory, Assumptions and success of Quantum Free Electron Theory, Fermi Energy (Qualitative), Fermi factor, Variation of Fermi factor
with temperature and energy. Numerical Problems.
Superconductivity:
Introduction to Superconductors, Temperature dependence of resistivity, Meissner Effect, Critical Field, Temperature dependence of Critical field and the second
& Numerical Problems, TypesofSuperconductors,BCStheory(Qualitative),HighTemperature superconductivity, Josephson
Junctions(Qualitative), Applications of superconductors - Maglev vehicle, SQUID's (Qualitative).
Prerequisites: BasicsofElectricalconductivity
Self-learning: Resistivity and mobility
Module-4 (10 Hours)
Quantum Information & Quantum Computing:
Frinciples of Quantum Information & Quantum Computing: Introduction to Quantum Computing, Moore's law &its end. Single
by Plack scheme. Sincle and Two subits. Extension to N subits
by bloch sphere. Single and Two qubits. Extension to N qubits.
Dirac representation and matrix operations: Introduction to Matrices, Matrix representation of 0 and 1 states, Identity Operator I,
Determination of $I 0\rangle$ and $I 1\rangle$, Pauli Matrices and its operations on $ 0\rangle$ and $ 1\rangle$ states, Explanation of I) Conjugate of a matrix ii) Transpose
1 of a matrix. Unitary Matrix U. Examples: Rowand ColumnMatricesandtheir multiplication(InnerProduct).

Sharnbasva University, Kalaburagi.

Modu	lle-5 (10 He	ours)
Quan Quan	tumGates&Oscillations tumGates:	,
Sing	le Qubit Gates: Quantum Not Gate, Pauli –Z Gate, Hadamard Gate, Phase Gate (or S Gate), T-Gate	
Mult gate,	tiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states). Representation of Swap , Toffoli gate.	pgate, Controlled –Z
Oscill	lations:	
Simpl Damp oscilla	e Harmonic motion (SHM) and characteristics, differential equation for SHM, series andparallel combination of bedoscillations and equation of motion for damped oscillation(derivation), Forced oscillations and differential ation (derivation. NumericalProblems.	springs (Derivation), l equation of forced
Prere	quisites:Motioninonedimension	
Self-le	earning:SHM	
Atthee	end ofthecoursethestudentwillbeableto:	
CO1	Describe the fundamental principles of lasers and Optical fibers, highlighting their properties and real world applications.	
CO2	Describe the core principles of quantum mechanics including its fundamental concepts and applications.	
CO3	Provide concise overview of conductors and superconductors highlighting their characteristics, differences and applications.	
CO4	Explain about quantum information and computing, focusing on matrix operations.	8
CO5	Explain the principles and operations of quantum gates along with their significance in quantum computing and oscillatory systems.	
Assess	sment Details (both CIE and SEE)	1

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component shall be 50 marks.

• Two Tests each of 25 Marks; after the completion of the syllabus of 50% and 100% respectively. The improvement of CIE-1 and CIE-2

2024

are conducted for weak students and the students who want to improve their marks scored in CIE-1 and CIE-2. Average of Best Two performances of the Internal Tests shall be considered for 25 Marks.

- Session wise assignments for 10 marks
- For Seminar work 10 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

SuggestedLearningResources:

Books(TitleoftheBook/Nameoftheauthor/Nameofthepublisher/EditionandYear)

- 1. SolidStatePhysics,SOPillai,NewAgeInternationalPrivateLimited,8thEdition,2018,.
- 2. EngineeringPhysicsbyGupta andGour,DhanpatRaiPublications,2016(Reprint).
- 3. ConceptsofModernPhysics,AurthurBeiser,McGrawhill,6thEdition,2009.
- 4. LasersandNonLinearOptics, BBLoud,Newageinternational,2011 edition.
- 5. AtextbookofEngineeringPhysicsbyM.N.Avadhanulu,PG.KshirsagarandTVSArunMurthy,Eleventhedition,SChandandCompanyLtd. NewDelhi-110055.
- 6. QuantumComputationandQuantumInformation,MichaelA.Nielsen&IsaacL.Chuang,CambridgeUniversitiesPress,2010Edition.
- 7. QuantumComputing, VishalSahani, McGrawHillEducation, 2007Edition.
- 8. EngineeringPhysics,SPBasavaraj,2005Edition,
- 9. PhysicsforAnimators,MicheleBousquetwithAlejandroGarcia,CRCPress,Taylor&Francis,2016.
- 10. QuantumComputationandLogic:HowQuantumComputersHaveInspiredLogicalInvestigations,MariaLuisaDallaChiara, Giuntini,Roberto Leporini,GiuseppeSergioli,TrendsinLogic,Volume48,Springer.
 Roberto
- 11. StatisticalPhysics:BerkelyPhysicsCourse,Volume5,F.Reif,McGrawHill.

WeblinksandVideoLectures(e-Resources):

Web links:

- 1. LASER :<u>www.youtube.com/watch?v=WgzynezPiyc</u>
- 2. Superconductivity :https://www.youtube.com/watch?v=MT5X15ppn48
- 3. **OpticalFiber:**<u>www.youtube.com/watch?v=N_Ka8EpCUQo</u>
- 4. QuantumMechanics:https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s
- 5. QuantumComputing: https://www.youtube.com/watch?v=jHoEjvuPoB8
- 6. **PhysicsofAnimation**:<u>www.youtube.com/watch?v=kj1kaA_8Fu4</u>
- 7. NPTEL Superconductivity: <u>https://archive.nptel.ac.in/courses/115/103/115103108/</u>

Sharnbasva University, Kalaburagi.

tivityH	BasedLe	earning(S	Suggested	Activities	sinClass)/	Practica	Basedle	arning	5 /	6			 CO-I C
o://npt	el.ac.inh	nttps://swa	ayam.gov.	<u>in</u>				16		1Y			values
os://vir	rtuallabs	.merlot.o	rg/vl_phys	sics.	0		V		1	N			indicat
nlhttp	s://phet.	<u>colorado.</u>	<u>edu</u>			3	~		~	4 Ca			The c
<u>os://wv</u>	ww.myp	hysicslab	<u>.com</u>		1 (1)			1					
's and	l POs M	lapping	(Individua	al teache	r has to fil	l up)						~	C0-
													ordina
	Doc			0	y y c	92	-			10	XF)	ordina
COs	Pos	2	3	4	5	6	7	851	9	10		12	ordina can the
COs	Pos 1 3	2	3	4	5	6	7	8	9	10	11	12	ordina can the manni
COs CO1 CO2	Pos 1 3 3	2 2 2 2	3	4	5	6	7	8	9	10	11	12 1 1	ordina can the mappin
COs CO1 CO2 CO3	Pos 1 3 3 3	2 2 2 2 2	3	4	5	6	7	8	9	10	11	12 1 1 1	ordina can the mappin using
COs CO1 CO2 CO3 CO4	Pos 1 3 3 3 3	2 2 2 2 2 2 2	3	4	5	6	7	8	9	10	11	12 1 1 1 1	ordina can the mappin using Compe
COs CO1 CO2 CO3 CO4 CO5	Pos 1 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2	3	4	5	6	7	8	9	10		12 1 1 1 1 1 1	ordina can the mappin using Compe y

AICTE Exam reforms.

Sub:Engg.Physics for CES/24PHYC102 COURSE OBJECTIVE:

This course will enable the students to

- Gain knowledge of different types of oscillations and shock waves, their generation and pratical applications.
- Develop comprehensive understanding of elastic properties of materials, their limitations and causes of elastic failure.
- Gain knowledge of acousticsincluding sound behaviour, control and oplimization of various architectural applications.
- Gain a fundamental understanding of lasers and Optical fobers and their applications in Engineering.
- Gain an understanding of various natural hazards and safety measures required to miligate their impact.

COURSE OUTCOME:

At the end of the course, the student will be able to

CO1. Analyze the principles of oscillations and shock waves, their generation processes and their diverse applications.

CO2. Examine the concepts elasticity, properties of elastic materials and the factors leading to their failures.

Page **17** of **95**

2024

CO3. Provide concise overview of building acoustics, including sound behavior, control techniques and their architectural significance.

CO4. Describe the core principles of lasers and Optical fibers, highlighting properties and their applications.

CO5.Explain different types of natural hazards and outline the prevention of strategies and safety measures to miligate their impact.

Module 1-Oscillations and Shock Waves

Oscillations: Simple Harmonic motion (SHM), differential equation for SHM &Numericals, series and parallel combination of springs (Derivation) &Numericals, Damped oscillations and equation of motion for damped oscillation (derivation),Tuned Mass Damper (TMD) (Qualitative), Forced oscillations and differential equation of forced oscillation (derivation), Resonance, sharpness of resonance.

Shockwaves: Mach number and Mach Angle, Mach Regimes, definition and characteristics of Shockwaves, Laws of conservation of mass, momentum and energy, Construction and working of Reddy shock tube, Applications of Shock Waves in treatment of dry borewell, Wood Preservation.

Pre-requisites: Basics of Oscillations

Self-learning: Simple Harmonic motion, differential equation for SHM (10hrs)

Module 2- Elasticity

Elasticity, Types of stress and strain, Hooke's law & stress-strain diagram, Elastic Moduli &Numericals, Poisson's ratio, Failures of Engineering materials – ductile fracture, brittle fracture, Fatigue and factors affecting fatigue (Qualitative explanation) Beams, bending moment of a beam (derivation),Cantilever and Young's modulus of a single cantilever (derivation) and its Engineering Application (Cantilever Bridge), Torsion of a cylinder (derivation) &Numericals.

Prerequisites: Elasticity, Stress & Strain

Self-learning: Stress-Strain Curve

(10hrs)

Module 3- Acoustics

Acoustics: Introduction to acoustics, Types of Acoustics, reverberation and reverberation time &Numericals, absorption power and absorption coefficient, Requisites for acoustics in auditorium, Sabine's formula (derivation &numericals), Measurement of absorption coefficient, factors affecting the acoustics and remedial measures, Noise and its Measurements, Sound Insulation and its measurements. Impact of Noise in Multi-storied buildings, Case study on Acoustics (CIE component only).

Prerequisites: Basics of Sound, Waves & light properties Self-learning: Introduction to acoustics

Module 4- Laser & Optical Fiber

2024

Laser:Properties of a LASER Beam, Interaction of Radiation with Matter, LASER action, Population Inversion, Metastable State, Requisites of a LASER System, Types of Lasers, Gallium-Arsenide LASER construction and working, LASER in Surveying and Ranging, Bridge deflection, Road Profiling. Numerical Problems.

Optical Fiber:Principle and Construction of Optical Fibers, Acceptance angle and Numerical aperture (NA), Expression for Numerical Aperture (derivation &numericals), Types of Optical fibers, Modes of Propagation, Attenuation and Fiber Losses & Numerical Problems, Fiber Optic Displacement Sensor.

Prerequisite: Properties of light

Self-learning: Propagation Mechanism & TIR in optical fiber (10hrs)

Module 5-Natural hazards and Safety

Introduction, Earthquake, (general characteristics, Physics of earthquake, Richter scale of measurement and earthquake resistant measures), Landslide (causes such as excess rain fall, geological structure, human excavation etc, types of land slide, adverse effects, engineering solution for landslides). Fire hazards and fire protection, fire-proofing materials, fire safety regulations and fire fighting equipment –Prevention and safety measures. Building materials – Composite materials (Polymer composites, Ceramic composites and Metal composites), Case study (CIE component only).

Pre requisite: Oscillations

Engineering Physics

COs and POs Mapping 2024-25

COs	POs							173				0
	1	2	3	4	5	6	7000	8	9	10	11	12
CO1	3	2	9			X	100			-	5	1
CO2	3	2	F				ACHI	8 AN	BISC	20		1
CO3	3	2			.0	~	500	170	Ya	20		1
CO4	3	2			19	91			-		30	1
CO5	3	2					and a	0 3	S. STO	3.00	~	16
Avg	3	2		6	2	D				X	J	10

Level 3 - Highly Mapped, Level 2- Moderately Mapped, Level 1 – Low Mapped

Note: The CO-PO mapping values are indicative. The course co-ordinator can alter the mapping using Competency and performance Indicators mentioned in the AICTE Exam reforms.

BASIC ELECTRICAL ENGINEERING

[As per Choice Based Credit System (CBCS) scheme] (Effective from the Academic Year 2024-25)

Course Code: 24ELE103/203 Contact Hours/Week: 03 Total Hours: 40 Semester: I/II Marks:50 SEE Marks: 50 Exams. Hours: 03 Credits: 03

Course Objectives: The main objective of the course is to understand:

1. The analysis of DC circuits and basics of Electromagnetic Induction.

- 2. The construction and working of DC Machines.
- 3. The concept of Single phase and three-phase AC circuits.
- 4. The construction and operation of Single-phase transformer and three phase Induction motor.
- 5. The construction and working of three phase alternator and circuit protective schemes.

MODULE I:

DC Circuits: Analysis of Series, Parallel and Series-Parallel circuits with DC excitation, Kirchhoff's laws.

Electromagnetic Induction:Faraday's Laws of Electromagnetic Induction, Types of induced EMF, Self-Inductance, Mutual -Inductance and Coefficient of coupling. 08 Hours

MODULE II:

2024

08 Hours

08Hours

DC Generator: Introduction, construction, working and emf equation. Classification of DC generator.DC Motor: Back emf and its significance, Torque equation. Classification of motors, 3-point starter 08 Hours

MODULE III

Single phase AC Circuits:Generation of AC voltage, Phase, Phase Difference, Peak value, Average value and RMS value, Phasor representation of alternating quantity. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC, RLC series circuits. Real power, Reactive power, Apparent power, Power factor.

Three phase AC Circuits: Introduction, Necessity and advantages of three phase systems, generation of three phase power. Definition of Phase sequence, balanced supply and balanced load. Relation between line and phase values of voltages and currents in a balanced star and delta connections. Measurement of Three phase power by Two-wattmeter method.

MODULE IV:

Single Phase Transformer:

Introduction, Necessity of transformer, Principle of operation and construction of single-phasetransformers (core and shell types). EMF equation, losses, efficiency, Voltage regulation.

Three Phase Induction Motor:

Concept of rotating magnetic field, Principle of operation, constructional features of motor. Types of Induction motor: Squirrel cage and Wound rotor, slip, significance of slip, applications.

MODULE V:

Three Phase Alternator: Introduction, Construction, working, Concept of Pitch factor and Distribution factor (Excluding derivation), Emf equation. Measuring Instruments &Domestic wiring:Construction and working of Dynamometer type wattmeter & Induction type energy meter, Concealed and Conduit wiring, Two way and Three-way control of a lamp.

Safety MCB, earthing, Electric Measures: Fuse, Necessity and types precautions it. of shock and against **08 Hours**

Course outcomes:

At the end of the course, the student will be able to:

- CO1: Analyze DC circuits and explain the concept of Electromagnetic Induction
- **CO2:** Explain the construction and working of DC Machines.
- CO3: AnalyzeSingle phase and three phase Circuits.
- CO4: Explain the working principles of transformers and Three Phase Induction Motor.
- CO5: Explain the working of Three phase Alternator and concept of Circuit protective devices,

Reference Books :

- 1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 5. V.K Mehata, Rohit Mehta "Principles Electrical Engineering and Electronics "S Chand and Company, 2nd edition, 2015

Question Paper Pattern:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

CO/PO Mapping:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3			1	1		1.18.2			1
CO2	3	2				1				-	$\leq a$	1
CO3	3	3	3			0	10		~ /	0	2	1
CO4	3	2					16	2	VIC	42		1
CO5	3	2				2	0	1		20		1
-		~~~~~~										

2024

Sharnbasva University B. Tech First year Scheme of Teaching and Examinations Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic Year-2024-25, Scheme 2024) First/ Second Semester

ENGINEERINGGRA	APHIC	SAND	DESIGN			
Course Code	24EC	GD104/2	4EGD2	04	CIE Marks	50
Teaching	L	Т	Р	Total	SEE Marks	50
Hours/Week	1 0 4 5		5	Total Marks	100	
Total Hours of Teaching	60		1	115	Exam Hours	03
Credits-03			d	A3	12 m	N F
			1	63	13542	-

Course Category: Foundation

Preamble: The course "Engineering Graphics and Design" is fundamental for all engineering students, especially in mechanical, civil, and all related fields. It equips students with essential skills in engineering drawing and introduces them to modern computer-aided design (CAD) tools, which have become the industry standard for design and visualization. This course aims to develop the ability to create, interpret, and modify engineering drawings, which are crucial for designing and manufacturing processes. The course also emphasizes the importance of standard drawing practices and provides an understanding of graphical communication used in engineering.

Pre-requisite, if any: Nil

Course Objectives:

- Students will be able to understand the basic principles and conventions of engineering drawing to analyze and draw the projections of points and lines.
- Students will be able to analyze and draw the orthographic projection of planes.
- Students will be able to understand the projection concepts in solids and apply concepts in the area of design.
- Students will be able to visualize the components isometric projection.
- Students will be able to develop the lateral surfaces.

Sharnbasva University, Kalaburagi.

Hours RBT Leve	Hour
10 L1,L2,L3	10
12 L1,L2,L3	12
14 L1,L2,L3	14
14 L1,L2,L3	14
10 L1,L2,L3	10
12 14 14 10	12 14 14 10

	B TRUME S
Text Books:	1. Bhatt, N.D., Engineering Drawing: Plane and Solid Geometry, 53rd edition, Charotar Publishing House Pyt, Limited, 2019.
	2. K. R. Gopalakrishna, & Sudhir Gopalakrishna: Textbook Of Computer Aided Engineering Drawing, 39thEdition, Subash
Reference Books:	1. S.N. Lal, & T Madhusudhan:, Engineering Visualization, 1st Edition, Cengage, Publication
	2. Parthasarathy N. S., Vela Murali, Engineering Drawing, Oxford University Press, 2015.
E-RESOURCES:	1. https://nptel.ac.in/courses/112105294
	2. <u>https://vtu.ac.in/en/study-material/</u>

Conduct of CIE and SEE Examination:

Continuous Internal Evaluation (CIE):

The weightage of Continuous Internal Evaluation (CIE) is 50% (50 marks) and for Semester End Exam (SEE) is 50% (50 marks). Continuous Internal Evaluation (CIE) marks Break up is as follows:

S.No	Particulars	Туре	Max. Marks
1	Continuous Internal Evaluation (CIE)	Test	25
	(CIE – I and CIE – II)	HAD.	X
2	Assignment	Classwork	10
3	Attendance	Classwork	05
4	Relevant Other Activities	Classwork	10
	(Seminar, Field Work, etc.)		PO
Total			50

• CIE-I test will be conducted for 2.5 Modules and CIE – II will be for the remaining 2.5 Modules. CIE shall be evaluated for max. marks of 50 and later the same shall be scaled-down to 25 marks as detailed below:

The final CIE = Test marks + Class work marks

Semester End Examination (SEE):

- SEE shall be conducted and evaluated for maximum marks 100. Marks obtained shall be accounted for SEE final marks, reducing it by 50%.
- Question paper shall be set jointly by both Internal and External Examiners and made available for each batch asper schedule.
- Questions are to be set preferably from the TextBooks.
- Evaluationshallbecarried jointlybybothexaminers.

SchemeofEvaluation:

- Tobedefinedbytheexaminersjointlyandthesameshallbesubmittedto the university along with question paper.
- One full question shall be set from each of Modules 1, 2, 3, 4, and 5, as per the weightage details provided in the table below:

2024

Sharnbasva University, Kalaburagi.

Questionpape	erPattern			~	
		No.	Module	9	Marksallotted
		M	odule1or2	16	30
		M	lodule3	\leq	40
		Мо	dule4 or 5	9	30
SchemeofEv	aluation	27	- OU SHAL		ALS .
	Q. No.	SolutionsandSketchingonsketchboo	k Computerdisplayand	Tota	al
		2100	Printout	Mar	rks
	1	10 Marks	20 Marks	30	2
	2	15 Marks	25 Marks	40	2 0
	3	15 Marks	15 Marks	30	5
	Total	40 Marks	60 Marks	100	4
•		112		8 -	VE
Feaching-Lea	rning Proc	ess (General Instructions)	The second se		2
These are sam	ple Strategie	es; which teachers can use to accelerate	the attainment of the variou	s cours	se outcomes.
1. Lecturer m	ethod (L) do	bes not mean only the traditional lectur	e method, but a different typ	e of tea	aching method may be adopted to develop the outcomes.
2. Use any su	itable Engin	eering graphics and design/CAD software films to explain concepts	are. Colorise Coloris		
5. Show vide	ollaborativ	Group Learning) learning in the class			
 Encourage (5 Ask at least 	three Highe	r-Order Thinking questions in the class	which promotes critical thi	nking	

6. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.

7. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.

COURSE	OUTCOMES: At the end of the course the student will be able to:
CO.1	Apply the principles of orthographic projection to project points and lines placed in the first quadrant, developing the ability to visualize and
	represent 3D objects in 2D space, and also demonstrate proficiency in basic computer-aided drawing (CAD) tools.
CO.2	Apply principles of projection to visualize and accurately draw planes (such as triangles, squares, rectangles, pentagons, hexagons, and circular
	lamina) inclined or perpendicular to the reference planes (HP and VP).
CO.3	Project various solid objects (prisms, cylinders, pyramids, cones, cubes, and tetrahedrons) in different orientations, focusing on solids resting on the
	horizontal plane (HP), and create accurate 2D representations from 3D models.
CO.4	Apply isometric projection principles to convert 3D objects into isometric views using the isometric scale, and vice versa, converting isometric

	views into orthographic projections.
CO.5	Develop lateral surfaces of simple and truncated solids (such as cylinders, cones, prisms, and pyramids) and apply these techniques to practical
	applications, including the development of surfaces for ducts, boxes, and containers.

apping of t	ine Col	irse Ou	ncomes	ior Co	urse C	oue 241	LGD10	4 / 24E	GD204	to Prog		comes	1			SYLLABUS:English	for
EGD104/ EGD204	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	Technical Writing	
0.1	3	-	-	-	3	- 5	2	7		-	SH		1	12	2		
0.2	3	-	-	-	3	- 11	17	-	10	-	-	28	1	0	-		
0.3	3	-	-	-	3	2	-/	-0		-	Yz	-	- 7		2		
0.4	3	-	-	-	3	-1/	- 2	1	- /				-	2	Y		
0.5	3	-	-	_	3	21	-93	-	- 1	38	40	6	-	7	10		
1-Lo	ow, 2- N	/ledium	i, and 3	- High			12			*		-		7			
	Cours	e title		_	Eng	lish Fo	r Techn	ical Wri	ting	1		- BA	-	-			
	Cours	e Code			24E	TW105	5	iour (())	ing		CI	E Marks		50			
	Cours	е Туре			The	ory	1.5		100	1	SE	E Marks tal Mark	s i	50			
	Seme	ster		8	I/II		V	00	ð	oraz.	ುಸವೆ	20	T.	5/		2	
	Teach	ing Hou	urs/Wee	k	3				TEDI	0	Ех	am Hou	s	3			
	Total	Hours (Of Peda	gogy	401	nours			-	HEB P	Cr	edits	0	03			
Γ	Course	e Objec	tive						DG	SY	2.52	20	0				
	То я	esist th	e studer	ts to id	entify i	nternal	structur	e of the	words	and form	a new y	vord		10		-	
2	Тоа	ssist th	e studer	its to ra	rry on t	he tasks	s and ac	tivities	through	n guided	instructi	ons and r	naterials	-	-	1	
3	Top	orovide	structur	e forma	tion rul	les to av	void cor	nmon e	rrors in	writing				1	21		
4	Toi	ntegrate	e efficie	ntly En	glish la	nguage	learning	g with e	mploya	bility ski	ills and t	raining.	-				
5	Top	provide	hands-c	on exper	ience tl	nrough	case stu	idies, m	ini proj	ects, gro	up and ir	dividual	presenta	tion			
6	To r	nake th	e studer	nts to ac	quire ba	asic pro	ficiency	y in Eng	glish inc	cluding s	peaking	and lister	ning skill	s.			
											~ ~ ~ ~ ~		_				

1. Basics of effective communication skills- meaning, process, types, importance and flow of communication, barriers to communication skills

Sharnbasva University, Kalaburagi.

- The concept of word formation –meaning, types of morphemes, derivational affixes, inflectional affixes, general morphological process in the formation of new words, word formation process
 Acquaintance with prefixes and suffixes from foreign language in English to form derivatives
- 4. Synonyms, antonyms and standard abbreviation

Module II : Basic Writing Skills

1. Sentence structure

- 2. Use of phrases and clauses in sentences
- 3. Importance of proper punctuation
- 4. Conjunction
- 5. Organizing principles of paragraphs in documents
- 6. Techniques for writing precisely

Module III : Identifying Common Errors in writing

- 1. Subject-verb agreement
- 2. Noun-pronoun Agreement
- 3. Misplaced Modifiers
- 4. Articles
- 5. Prepositions
- 6. Usage of Tense
- 7. Usage of Modal auxiliaries

Modal IV : Nature and style of Technical writing

Module VI : Oral Communication

2024

(This Module involves interactive practice sessions in Language Lab)

- 1. Pronunciation, Intonation, Stress and Rhythm
- 2. Common Everyday situations, Conversations and Dialogues
- Communication at Workplace 3.
- 4. Interviews
- Formal Presentations 5.

Text/Reference Book

- 1. AICTE'S Prescribed Textbook: English (with Lab Manual), Khanna Book Publishing Co.
- 2. Effective Communication Skills, Kul Bhushan Kumar, Khanna Book Publishing,
- 3. Practical English Usage. Michael Swan. OUP. 1995
- Remedial English Grammar. F.T.Wood. Macmillan.2007 4.
- On Writing Well. William Zinsser. Harper Resource Book, 2001. 5.
- Study Writing Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006. 6.
- Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011 7.
- Exercise in Spoken English. Parts. 1-Ill. CIEF, Hyderabad. Oxford University press. 8.

Course Outcomes

At the end of course the students will be able to

CO1. Identify the internal structure of words and form a new words.

CO2. carry activities on task and activities regarding comprehension in English

CO3. avoid common mistakes in writing

CO4. integrate efficiently language learning with employment skills and training.

CO5. Get communication experience through case-studies, mini-projects, group and individual presentation.

CO6. Acquire proficiency in English including speaking and listening skills.

PO								100				
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01					2		20	01	0000	03	01	01
C 02				1	0			01	01	01	/	02
C03						1		01	_	02	-11	01
C04							57		01	02	02	02
C05							10	01	01	03		02
C06		ſ	1	Í					AK		2	

English for Technical Writing

Course Outcomes :

CO1. Identify the internal structure of words and form a new words.

CO2. carry activities on task and activities regarding comprehension in English

CO3. avoid common mistakes in writing

CO4. integrate efficiently language learning with employment skills and training.

CO5. Get communication experience through case-studies, mini-projects, group and individual presentation.

Cos an	d POs M	lapping	(Individ	ual teach	ner has t	o fill up)	5			\sim	2	$)_{1c}$
PO					C	27	4		-		10	16
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01					11	7		01	15100	03	01	01
C 02					1.22		100	01	01	01	8	02
C03					211	1	1	01	1 nr	02	Y	01
C04					11/	1.5			01	02	02	02
C05					Y/	D')	01	01	03		02

ENGINEERING PHYSICS LAB

COURSE LEARNING OBJECTIVES:

This course (24PHL106/24PHL206) Will enable students to

- 1. To realize experimentally, the mechanical, electrical and thermal properties of materials, concept of waves and oscillations.
- 2. Design simple circuits and hence study the characteristics of semiconductor device.

CORSE OUTCOMES:

- 1. Determine spring constants in series and parallel and Youngs modulus of a beam by single cantilever experiment.
- 2. Obtain I-V characteristics of Zener diode and Photodiode.
- 3. Determine acceptance angle and numerical aperture of an optical fibre and also wavelength of semiconductor laser.
- 4. Obtain Transistor characteristics and also calculate Dielectric charging and discharging.
- 5. Estimate the Fermi energy of copper and Stefans law of radiation.
 - 1. Determination of Spring Constants in Series and Parallel Combination.
 - 2. n and I by Torsional Pendulum (Radius of wire, mass and dimensions of the regular bodies to be given)
 - 3. Youngs modulus of a beam by Single Cantilever Experiment.
 - 4. Study of I-V characteristics of Zener diode and determine the knee voltage and the break-down voltage.
 - 5. Study series and parallel LCR resonance and hence calculate the inductance, bandwidth and quality factor using series LCR resonance.
 - 6. Determine Acceptance angle and Numerical aperture of an optical fiber.
 - 7. Determine Wavelength of semiconductor laser using Laser Diffraction by Calculating grating constant.
 - 8. Estimation of Fermi energy of copper.
 - 9. Study of input and output Transistor characteristics and hence calculate input resistance and output resistance.

Page **30** of **95**

Sharnbasva University, Kalaburagi.

- 10. Draw I-V characteristics of photodiode and calculate power responsivity.
- 11. Calculation of Dielectric constant by RC Charging and Discharging.
- 12. Stefans Law of Radiation.

Engineering Physics Lab

COs and POs Mapping 2024-25

COs	Pos					18	0			5	2	1
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2				19		-	3		100	1
CO2	3	2			1			50	3	0.		1
CO3	3	2			111		100	_0	3	N		1
CO4	3	2			VA	15	0.0	1 30	3			1
CO5	3	2		1		60			3	_	10	1
Avg	3	2		0				2.2	3	2		1

Level 3 - Highly Mapped, Level 2- Moderately Mapped, Level 1 - Low Mapped

Note: The CO-PO mapping values are indicative. The course co-ordinator can alter the mapping using Competency and performance Indicators mentioned in the AICTE Exam

BASIC ELECTRICAL ENGINEERING LAB

[As per Choice Based Credit System (CBCS) scheme] (Effective from the Academic Year 2024-25)

Course Code:24ELL107/207 Contact Hours/Week: 02 Total Hours:24 Semester: I/II Marks: 50 SEE Marks: 50 Exams. Hours: 03 Credits: 01

Course Objectives: The main objective of the course is to:

- 1. Verify Kirchhoff's laws and measure power in various lamps to understand electrical laws and power consumption.
- 2. Analyze voltage and current in series and parallel circuits, and measure coil resistance and inductance using the three-voltmeter method.
- 3. Implement two-way and three-way lamp control and measure three-phase power with the two-wattmeter method.

- 4. Determine phase and line quantities in Star and Delta loads, and evaluate single-phase transformer efficiency.
- 5. Operate energy meters and assess fuse and MCB characteristics for managing energy consumption and circuit safety.

LIST OF EXPERIMENTS

- **1.** Verification of Kirchhoff's laws.
- 2. Power measurement of different types of lamps.
- 3. Analysis of voltage and current in series and parallel circuits, using three lamps.
- 4. Measurement of resistance and inductance of a coil using three-volt meter method.
- **5.** Two-way and three-way control of a lamp.
- 6. Measurement of three phase power by two wattmeters.
- 7. Determination of phase and line quantities in three phase Star and Delta connected loads.
- 8. Determination of efficiency of single phase transformer.
- 9. Determination of percentage error of given energy meter.
- **10.** Obtain characteristics of Fuse & MCB.

Course outcomes:

At the end of the course, the student will be able to:

CO1:Demonstrate Kirchhoff's laws and power measurement techniques to solidify understanding of basic electrical principles and power usage.

CO2: Conduct voltage and current analysis in circuits, and assess coil resistance and inductance using the three-voltmeter method for better circuit characterization.

CO3:Perform lighting control through two-way and three-way switches, and accurately measure three-phase power with the two-wattmeter method.

CO4: Analyze phase and line quantities in Star and Delta connections, and assess the efficiency of single-phase transformers for system performance evaluation.

CO5:Operate and understand energy meters and evaluate fuse and MCB functions to manage electrical consumption and ensure safety in circuits.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3							3	2		1
CO2	3	3					0		3	2	1	1
CO3	3	3					011	6	3	2	5	1
CO4	3	3				0	112	5	3	2	0	1
CO5	3	3				3			3	2	2	1

Sharnbasva University B. Tech First Year Scheme of Teaching and Examinations Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic Year-2024-25, Scheme 2024) First/Second Semester

DESIGN THINKING	15		14		210	
Course Code	24DTI	L108/24DTL20	8	S. 1	CIE Marks	50
Teaching Hours/Week	L	T	P	Total	SEE Marks	50
	0	0	2	2	Total Marks	100
Total Hours of Teaching	24	-	12	5	Exam Hours	03
Credits-01	2	一题 能			<	

Course Category: Foundation

Preamble: This course introduces the basic concepts and techniques of engineering and reverses engineering, the process of design, analytical thinking and ideas, basics and development of engineering drawing, application of engineering drawing with computer aide.

Pre-requisite, if any: Nil

Course Objectives:

- To equip students with knowledge about different learning styles (Kolb's Learning Styles) and memory processes, along with techniques to enhance memory and retention.
- To familiarize students with the need, objectives, and stages of the Design Thinking process, from empathy to prototyping and testing, using real-world examples.
- To teach the engineering product design process and Train students in the rapid prototype development process, testing methodologies.
- To focus on customer-centric design through Design Thinking.
- To incorporate user feedback into the design process for continuous improvement and present innovative

Module No.	Topics SHAP	Teaching Hours	RBT Levels
Module-1	 An Insight to Learning: Understanding the Learning Process, Kolb's Learning Styles, Assessing and Interpreting Remembering Memory: Understanding the Memory process, Problems in retention, Memory enhancement techniques. Experiments: Identifying and Assessing Learning Styles using Kolb's Model. Enhancing Memory Retention using Memory Techniques. 	04	L1, L2, L3
Module-2	 Emotions: Experience & Expression Understanding Emotions: Experience & Expression, Assessing Empathy, Application with Peers Basics of Design Thinking: Definition of Design Thinking, Need for Design Thinking, Objective of Design Thinking, Concepts & Brainstorming, Stages of DesignThinking Process, Empathize, Define, Ideate, Prototype, Test. Experiments: Assessing Empathy and Emotional Experience in Peer Interactions. Design Thinking Process: Empathy to Prototyping. 	05	L1, L2, L3
Module-3	Being Ingenious & Fixing Problem: Understanding Creative thinking process, Understanding Problem Solving, Testing CreativeProblem Solving Process of Product Design: Process of Engineering Product Design, Design Thinking Approach, Stages of Product Design, Examples of best product designs and functions, Assignment – Engineering Product Design Experiments: 1. Testing Creative Problem Solving. 2. Engineering Product Design Using the Design Thinking Approach.	05	L1, L2, L3

Sharnbasva University, Kalaburagi.

Module-4	Prototyping & Testing:	05	L1, L2, L3
	What is Prototype? Why Prototype? Rapid Prototype Development process, Testing, Sample Example, Test		
	Group Marketing.		
	Celebrating the Difference:		
	Understanding Individual differences & Uniqueness, Group Discussion and Activities to encourage the		
	understanding, acceptance and appreciation of Individual differences		
	Experiments:		
	1. Prototyping and Testing a Simple Mechanical/Electronic/Electrical/Apps.		
	2. Celebrating Diversity through Inclusive Design Workshop.		
Modulo 5	Design Thinking & Customer Contrigity	05	111213
Module-5	Design 1 minking & Customer Centricity:	05	L1, L2, L3
	Practical Examples of Customer Chanenges, Use of Design Thinking to Enhance Customer Experience,		
	Parameters of Product experience, Alignment of Customer Expectations with Product Design.		
	Feedback, Re-Design & Re-Create:		
	Feedback loop, Focus on User Experience, Address "ergonomic challenges, User focused design, rapid		
	prototyping & testing, final product, Final Presentation – "Solving Practical Engineering Problem through		
	Innovative Product Design & Creative Solution".		
	Experiments:		
	1. Customer-Centric Product Design.		
	2. Designing a User-Friendly Ergonomic Tool		
	The second secon		

a har 2								
Text Books:	3. E Balaguruswamy (2022), Developing Thinking Skills (The way to Success), Khanna Book Publishing Company							
Reference Books:	 Roger Martin, "The Design of Business: Why Design Thinking is the Next Competitive Advantage", Harvard Business Press , 2009. Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design Thinking: Understand –Improve– Apply", Springer, 2011. Maurício Vianna, Ysmar Vianna, Isabel K. Adler, Brenda Lucena, Beatriz Russo, "Design thinking: Business Innovation" MJV Press, 2011. Jeanne Liedtka , Andrew King, Kevin Bennett , "Book - Solving Problems with Design Thinking- Ten Stories of What Works" (Columbia Business School Publishing), 2013. 							

2024

Conduct of CIE and SEE Examination:

Continuous Internal Evaluation (CIE):

The weightage of Continuous Internal Evaluation (CIE) is 50% (50 marks) and for Semester End Exam (SEE) is 50% (50 marks). Continuous Internal Evaluation (CIE) marks Break up is as follows:

S.No	Particulars	Туре	Max. Marks
1	Continuous Internal Evaluation (CIE)	Test	25
2	Assignment	Classwork	10
3	Attendance	Classwork	05
4	Relevant Other Activities	Classwork	10
	(Seminar, Field Work, etc.)	NA	
Total	otal		50

Semester End Examination (SEE): Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Scheme of Semester End Examination (SEE):

ONE question from Module1 or Module 2:20 Marks

ONE question from Module3 or Module 4or module 5:30 Marks

Viva –Voice :10 Marks

Total :50 Marks

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOTS (Higher-Order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develops thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
| COURS | E OUTCOMES: At the end of the course the student will be able to: |
|-------|---|
| CO.1 | Compare and classify the various learning styles and memory techniques and apply them intheir engineering education. |
| CO.2 | Analyze emotional experience and inspect emotional expressions to better understand userswhile designing innovative products. |
| CO.3 | Develop new ways of creative thinking and learn the innovation cycle of Design Thinking process for developing innovative products |
| CO.4 | Propose real-time innovative engineering product designs and choose appropriate frameworks, strategies, techniques during prototype development |
| CO.5 | Perceive individual differences and its impact on everyday decisions and further Create a better customer experience |

Mapping of	Mapping of the Course Outcomes for Course Code 24DTL108/24DTL208 to Program Outcomes														
24DTL108 /24DTL20 8	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
CO.1	3	-	-	-	-7	1	-	-	-		-	3	1 0		T
CO.2	3	3	-	3	3	1	22	-	1	No.		1	1	A	0
CO.3	3	-	3	-	3	3	1	-	18	SK	1	6	1	C	
CO.4	3	-	3	-	3	- 1	2-	-	-		-	1	1	Z	
CO.5	3	-	-	-	3	3	3	3	3	- 18	arte.		1	VI	
1-Low 2- M	[edium	and ?	R. Hioł				-	1.	185		a wear	1999		m	1

Sharnbasva University B. Tech First year Scheme of Teaching and Examinations Outcome-Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic Year-2024-25, Scheme 2024) First/Second Semester

Course Code	24ID	L109/24I	DL209	Woah	CIE Marks	100	
Teaching Hours/Week	L	Т	P	Total	SEE Marks	-	
	1	0	3	4	Total Marks	100	
Total Hours of Teaching	48			6	Exam Hours		

2024

Course Objectives:

- To provide foundational knowledge and hands-on experience with essential tools, materials, components, and software, equipping learners with the skills and confidence to effectively utilize these resources in practical and professional settings.
- To equip learners with practical expertise in traditional machining processes, CAD-based design techniques, circuit prototyping, and PCB assembly, preparing them for real-world engineering and manufacturing applications.
- To develop expertise in advanced manufacturing technologies, environmental analysis, efficient power system design, sensor-integrated circuit building, IoT-driven programming, and intellectual property utilization to foster innovation and practical engineering solutions.
- To engage first-year engineering students in the IDEA Lab through hands-on mini projects that emphasize creativity, teamwork, and foundational engineering concepts, while providing practical exposure to problem-solving and innovation.
- To develop first-year engineering students' technical, analytical, and communication skills by documenting their mini-projects comprehensively through detailed reports and video presentations that highlight the project development process and outcomes.

Module No.	Topics	Teaching Hours	RBT Levels	
Module-1	Exploring the operational techniques, applications, and safety measures associated with essential manual and power tools. Examining the properties, applications, and selection criteria of construction materials, along with an overview of advanced building tools. Understanding the classification, functionality, and practical implementation of electronic and electrical components in circuit design. Introduction to Doxygen, Google Dox, Git &Github.	10	L1, L2	/
Module-2	A comprehensive overview of traditional machining operations, including turning, milling, drilling, and grinding, focusing on their mechanisms and industrial applications. Understanding the fundamental AutoCAD commands for precise drafting, modeling, and design workflows in engineering applications. Hands-on prototyping using (a) breadboards for temporary circuit assembly and testing, and (b) Zero PCBs for semi-permanent circuit layouts. Familiarization with single-sided and double-sided Printed Circuit Boards (PCBs), emphasizing their design considerations and assembly techniques. Introduction to Overleaf version control.		L1, L2	
Module-3	Comprehensive coverage of Computer Numerical Control (CNC) machining techniques and advanced prototyping methods, including 3D printing processes. Detailed exploration of methodologies for water testing and soil testing, emphasizing environmental assessment and compliance standards. Understanding the principles and development of linear and switching power supply systems for efficient energy conversion and regulation. Study of electronic circuit building blocks, incorporating the integration and functionality of common sensors in practical applications. Hands-on programming of Arduino and Raspberry Pi platforms for innovative automation and IoT (Internet	10	L1, L2	Y

Page **38** of **95**

2024

	of Things) solutions. Introductory concepts of IPR and patents, with practical guidance on accessing and leveraging patent information within the IDEA Lab for innovation-driven projects.	6		
Module-4	 Discussion and implementation of a mini project: For first-year students in an IDEA Lab, mini-projects should be simple yet impactful, fostering creativity, collaboration, and basic engineering principles. Below are a few experiment ideas that can form the basis of a mini-project aimed at first-year engineering students Sample types of mini projects: Simple Hydraulic Arm. Wind Turbine Power Generator. Smart Watering System. Miniature Bridge Design and Load Testing. solar-powered charger. Electric Go-Kart Design Challenge. 	10 RNB		6-1
Module-5	 Documentation of the mini project (Report and video): For first-year engineering students, the documentation of a mini project—both through written reports and video recordings—is essential for capturing the entire project development process, reinforcing their technical and communication skills. Below are structured experiments/lab activities that focus on documentation for the IDEA Lab. Experiments/ Lab activities: Write reports based on mini-projects (e.g., hydraulic arm, solar-powered charger, etc.). The report must include diagrams, data tables, and photos taken during the project development process. Record short clips documenting different phases of their project, such as planning, construction, and testing. Each group will compile a 3-5-minute video showcasing the process and results of their project Students will narrate their video, explaining each step clearly, and must include a demonstration of the working prototype. 	08	L1,L2	9
	Sapowa out	ana a	JC	フ

Mapping Outcomes	of the	Cour	se Ou	tcomes	for (Course	Code	24DT	L108/2	4DTL20)8 to Pi	rogram			
24DTL108/ 24DTL208	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2	PSO3
CO.1	3	-	-	-	2	-	- (/	2			12	\geq	2	1	1
CO.2	3	-	-	-	3	2	12	9	\sim	-	2	-	2	VIS.	1
CO.3	3	-	-	-	3	-7	2		-	50	SH	AR	-	1	1
CO.4	3	-	-	2	3	-	2	-13	2	2	2	2	10	1	1
CO.5	3	-	-	-	2	47	- 6	2	2	2	1	2	1	0	2
			2. 3D Pu 3. Th Ch 4. Th Pro 16 5. Ma 6. Pra	 Printi blishin blishin blishin	ng & g Com Book of kett. V Inven Sean 584. pols: H 018. IS Electro	Desigr pany, N of Mak Veldon tors M Micha low Th BN-13 onics fo	anual (anual (anual (arey Wo : 978-9 or Inve	Sabrie Elhi. Ils: Too 2018. Popula gan (ork and 035213 ntors.	Solom ols & T ISBN- ur Scien Author 1 How 7374 4th edit	an, ISBN echnique: 13: 978-1 ice): Tran). Weldo to Use T tion. Paul	N: 978-9 s for Bu 681884 isform Y on Owe Them. P 1 Sherz a	0386173 iilding (325. Your Idea en; 201 latt, Ch and Sim	768, Kł Great Te a into a 7. ISBI arles. Sl oon Mon	hanna Book ch Projects. Top-Selling N-13: 978- hroff/Maker k. McGraw	
 Hill ISBN-13: 978-1259587542. Programming Arduino: Getting Started with Sketches. 2nd edition. Simon McGraw Hill. ISBN-13: 978-1259641633. Make Your Own PCBs with EAGLE: From Schematic Designs to Finished E Simon Monk and Duncan Amos. McGraw Hill Education. ISBN-13: 978-126001 Ian Gibson, David W Rosen, Brent Stucker., "Additive Manufacturing Techno Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010. 										non Monk. ned Boards. 60019193. echnologies:	D				

Conduct of	f Continuous Internal Evaluation (CIE)):	
The weight	tage of Continuous Internal Evaluation (C	IE) is 100% (100 marks).	
Continuous	s Internal Evaluation (CIE) marks Break u	p is as follows:	1
S.No	Particulars	Туре	Max. Marks
1	Project/work done at IDEA Lab	Prototype/ Simulation	50
2	Report writing	Written/typed	50
Total		RACE	100

COURSE	E OUTCOMES: At the end of the course the student will be able to:
CO.1	To equip learners with foundational technical skills, safe tool usage, material selection expertise,
	circuit design knowledge, and proficiency in essential documentation and collaboration tools.
CO.2	To develop learners' proficiency in machining processes, CAD design, circuit prototyping, and
	PCB assembly, preparing them for practical engineering tasks and innovation.
CO.3	To equip learners with advanced technical competencies in CNC machining, 3D printing,
	environmental testing, power systems design, sensor-integrated circuits, IoT programming, and
	intellectual property utilization for innovative engineering solutions.
CO.4	To enhance first-year engineering students' creativity, teamwork, and problem-solving skills by
	engaging them in impactful and hands-on mini-projects that apply basic engineering principles in
	innovative and practical ways.
CO.5	Document mini projects thoroughly using technical writing tools (Google Docs, Overleaf) and
	version control (GIT, GitHub), culminating in project reports and video presentations.

SHARNBASVA UNIVERSITY ENGINEERING CHEMISTRY FOR ELECTRICAL AND ELECTRONICS ENGINEERING STREAM

Syllabus

Semester:I

Course Title:	Engineering Chemistry for EES									
Course Code:	24CHEE102	CIE Marks	50							
Course Type		SEE Marks	50							
	(Theory)	Total Marks	100							
Teaching Hours/Week (L/T)	3	ExamHours	03							
Total Hours of Pedagogy	40 hours	Credits	03							

2024

Course objectives

- To enable students to acquire knowledge on principles of chemistry for engineeringapplications.
- To develop an intuitive understanding of chemistry by emphasizing the relatedbranches of engineering.
- To provide students with a solid foundation in analytical reasoning required to solvesocietal problems.

Teaching-Learning Process

These are sample strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching–Learning more effective.

- Flipped class
- Smart class room
- Blended mode of leaning
- Interactive simulations and animation
- Tutorial & remedial classes for needy students (not regular T/R)
- Conducting Makeup classes
- Demonstration of concepts either by building models or by industry visit
- Experiments in laboratories shall be executed in blended mode (conventional or non-conventional methods)
- Use of ICT Online videos, online courses
- Daily learning through assignments

MODULE 1: Conducting Materials and polymers

Conductors and Insulators: Introduction, principle with examples.

Semiconductors: Introduction, production of electronic grade silicon-Czochralski process (CZ) and Float Zone (FZ) methods.

Polymers: Introduction, Molecular weight - Number average, Weight average and numerical problems. Conducting polymers – synthesis and conducting mechanism of polyacetylene. Preparation, properties and commercial applications of graphene oxide.

PCB: Electroless plating - Introduction, Electroless plating of copper in the manufacture of double-sided PCB.

MODULE 2: Battery Technology and Sensors(8hr)

Batteries: Introduction to batteries, construction, working and applications of Ni-MH battery, Lithium ion and Sodium ion batteries.

Fuel Cells: Introduction, construction, working and applications of methanol-oxygen and

1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

(8hr)

polymer electrolyte membrane (PEM) fuel cell.

Sensors: Introduction, working principle and applications of Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Sensors for the measurement of dissolved oxygen (DO). Electrochemical gas sensors for SOx and NOx.

MODULE 3: Corrosion Science and Energy Conversion Systems

(8hr)

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion-differential and differential aeration. Corrosion control - galvanization, anodization and sacrificial anode method. Corrosion Penetration Rate (CPR) - Introduction and numerical problem.

Electrode System: Introduction, types of electrodes. Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode - Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell– Definition, construction and Numerical problems.

Solar Energy: Introduction, importance of solar PV cell, construction and working of solar PV cell, advantages and disadvantages.

MODULE 4: Display and Memory Systems

(8hr)

(8hr)

Display Systems: Photoactive and electroactive materials, Nanomaterials and organic materials used in optoelectronic devices. Liquid crystals (LC's) - Introduction, classification, properties and application in Liquid Crystal Displays (LCD's). Properties and application of Organic Light Emitting Diodes (OLED's) and Quantum Light Emitting Diodes (QLED's), Lightemitting electrochemical cells.

Memory: Introduction, Basic concepts of electronic memory, History of

organic/polymer electronic memory devices, Classification of electronic memory devices, types of organic memory

devices (organic molecules, polymeric materials, organic- inorganic hybrid materials).

MODULE 5: Nanomaterials, E-Waste Management and Analytical Techniques

Nanomaterials : Introduction, size dependent properties of nanomaterials (surface area, catalytic and electrical), preparation of NPs by sol-gel and precipitation methods

E-Waste: Introduction, sources of e-waste, Composition, Characteristics, and Need of e- waste management. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery: Different approaches of recycling (separation, thermal treatment)

Analytical Techniques: Introduction, principle and instrumentation of Colorimetric sensors; its application in the estimation of copper, Potentiometric sensors; its application in the estimation of iron.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

2024

CO1.	Identify	the terms	and	processes	involved	in scientific	and	engineering						
	applications													
CO2.	Explain the processes	phenomena o	f chemis	try to desc	ribe the meth	ods of engineering	ng							
CO3.	Solve for the	Solve for the problems in chemistry that are pertinent in engineering applications												
CO4.	Apply the bas	sic concepts o	f chemist	ry to explai	n the chemical	properties andproc	cesses	0.						
CO5.	Analyze multidisciplin	properties ary situations	andj	processes	associated	with chemical	subs	stances in						
			2											

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are:

The CIE marks for the theory component shall be 50 marks is as detailed below:

- Four tests each of 25 Marks; (Third and fourth tests are improvement tests, Average of best of first or third CIE and Second or fourth CIE is considered).
- CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 30 minutes)
- Session wise assignments for 10 marks
- Activities 10 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- 3. The question paper will have ten full questions carrying equal marks.
- 4. Each full question carries 20 marks.
- 5. There will be two full questions (with a maximum of four sub questions) from each module.

Each full question will have sub questions covering all the topics under a module. 6. 7. The students will have to answer five full questions, selecting one full question from each module. Suggested Learning Resources: Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year) 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition. 2. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd. 3. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing 4. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley 5. 6. Engineering Chemistry – I, D. GrourKrishana, Vikas Publishing A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12thEdition, 2011. 7. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing 8. house. 2nd Edition, 2016. 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999. 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin& A.C. Arsenault, RSCPublishing, 2005. 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996. 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019. 13. OLED Display Fundamentals and Applications, TakatoshiTsujimura, Wiley–Blackwell, 2012 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, ElzbietaFrackowiak, Wiley-VCH; 1st edition, 2013. 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda, 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The

2024

National Academies Press. doi: 10.17226/4782.

- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022
- High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010
- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, NiraliPrakashan, 2020
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1st Edition, 2002.
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd Edition 2014
- 25. Principles of nanotechnology, Phanikumar, Scitech publications, 2nd Edition, 2010.
- 26. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah& Pushpa Iyengar., Subash Publications, 5th Edition, 2014
- 27. "Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint, 2015.
- 28. Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd.,
- 29. Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co.

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- https://nptel.ac.in/courses/104/103/104103019/
- <u>https://ndl.iitkgp.ac.in/</u>
- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-9IbHrDMjHWWh
- <u>https://www.youtube.com/watch?v=j5Hml6KN4TI</u>
- <u>https://www.youtube.com/watch?v=X9GHBdyYcyo</u>
- <u>https://www.youtube.com/watch?v=1xWBPZnEJk8</u>
- <u>https://www.youtube.com/watch?v=wRAo-M8xBHM</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- <u>https://demonstrations.wolfram.com/topics.php</u>
- <u>https://interestingengineering.com/science</u>

			COs and	d POs Ma	apping (Individ	ual teach	ner has to	o fill up)		211	
			PO			V/G	X			\sim	3/1/	0
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1		1		1	5	SH,	10		
CO2	3	1	1		110		1	1	6	N.V.		
CO3	3	1	1		V	6	1	100	:lin			
CO4	3	1	1	4		0	1	1-60-1	1 Sie		20	112
CO5	3	1	1	0			1 💋			100	4	

BASIC ELECTRONICS ENGINEERING

[As per NEP, Outcome based Education (OBE), and Choice Based Credit System (CBCS) Scheme]

SEMESTER-I

Course Code	24ELN103/203	CIE Marks	
Number of Lecture Hour/Week	3	SEE Marks	
Course Type	Theory	Exam Hours	
Theory/Practical/Integrated		Calorina Para	6
Number of Lecture Hours	40	Credits	

CREDITS-03

Course Objectives: Students will be taught to:

- Characteristics operation and application of PN- Junction diode and its application derivation of current, voltage components, efficiency and ripple factor.
- Basics of embedded system, applications, difference between embedded system and general computing system.
- Basics of differentnumbersystems, conversion between number systems, binary addition, subtraction, workingoffundamental building blocks of digital circuits, and implementation of simple digital circuits.
- Basics of transducers, its classification and measurement of frequency and phase using CRO.Basic principle of communication system.

Module -1	Teaching Hours
Semiconductors and Diodes: Conductors, Semiconductors, n-type and p-type semiconductor, diode	08 Hours

Theory: basic ideas, The ideal diode, forward and reverse bias, diode equation, V-I Characteristic, diode	
approximation.	
Rectifiers: Half-wave Rectifier, Full-wave and Bridge Rectifier, derivation of ripple factor, efficiency of	
Half-wave, full-wave and bridge rectifiers, rectifier application. Text:1-	
1.3,1.4,1.0,1.7,2.1,2.2,2.3,2.9,3.1,3.2. Modula _2	<u> </u>
Embedded Systems – Definition Embedded systems vs general computing systems Classification of	
Embedded Systems Major application areas of Embedded Systems, Elements of an Embedded System.	
Core of the Embedded System, Microprocessor vs Microcontroller, RISC vs CISC, Harvard vs Von-	08 Hours
Neumann, Classification of RAM and ROM, Text 2: 1.1, 1.2, 1.4, 1.5, 2.1.1.4, 2.1.1.6, 2.1.1.7, 2.2,	10
2.2.1,2.2.2.	0
Module -3	
Number Systems: Decimal Number System, Binary Number System, Octal Number System,	
Hexadecimal NumberSystem.Number base conversions: Binary to Decimal, Decimal to Binary, Binary	111
to Octal, Octal to Binary, Binary to Hexadecimal, Hexadecimal to Binary, Decimal to Octal, Octal to	IT
Decimal, Decimal to Hexadecimal, Hexadecimal to Decimal, Octal to Hexadecimal, Hexadecimal to	
octal. Complement of Binary Numbers, Binary addition, Binary subtraction. Boolean Laws, De Morgan's	08 Hours
theorem.	\subseteq
Logic gates: Basic and Universal gates, Algebraic Simplification of Boolean Expression and	Z
implementation using logic gates, Universal properties of NAND and NOR gates, Half adder and Full	\leq
adder Implementations. Text 3: 10.2, 11.2, 11.3, 11.4, 10.3, 10.4, 11.7, 11.8.	m
Module -4	-0
Transducers and Measurements: Transducers: Electrical Transducers, Resistive transducers, Strain	
Gauges, Thermometer, Thermistor, LVDT, Piezo electrical transducers, Numerical as applicable. Text 4:	
13.1, 13.2, 13.4, 13.6, 13.7, 13.8, 13.11, 13.15,	11 0
Measurements: CRT, CRO, Measurements of frequency and phase using Lissajous method. Text 4:	08 Hours
7.2,7.4,7.5,7.20, 7.26	
Module -5	
Communication System:Introduction, Block diagram of communication system, Modulation, Need for	08 Hours
Modulation, Types of modulation, Analysis of AM and FM, Generation and detection of AM and FM,	3
Comparison between amplitude and frequency modulation schemes. Text 3: 18.1,	TT
18.2,18.3.1,18.3.2,18.3.3,18.3.4.	A
Course Outcomes:	
CO1 : Explain and analyze the application of diode in rectifier circuits.	
CO2 : Understand the basics of embedded system and identify the difference between microprocessor and m	icrocontroller.
CO3 : Understand number system conversions and design basic digital circuits using logic gates.	
CO5 : Understand the principles of communication system and analyze various modulation techniques	XU.
cos. Onderstand the principles of communication system and analyze various modulation techniques.	

CO/PO	P0.1	P0.2	P0.3	P0.4	P0.5	P0.6	P0.7	PO.8	P.0.9	P0.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	2	-	-	-	-		50	2		$\langle \cdot \rangle$	3	-	-
CO2	3	1	-	-	-	-//		~	-	1	-	X	3	-	-
CO3	3	3	3	-	2			-	-	-			3	1	ė.
CO4	3	-	-	-	6	4 7/	ررى	-	-	-	-	1	3	6	-
CO5	3	2	-	-	1	-	7	-	1	CL	-	-	3	X	-
Text Books					10	_ /	1		5	21	AL			- 11	

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 2. K V Shibu, 'Introduction to Embedded Systems', 2nd Edition, McGraw Hill Education (India), Private Limited, 2016.
- 3. D P Kothari, I J Nagrath, Basic Electronics, McGraw Hill Education, ISBN:978-93-329-0158-2, 2014.
- 4. H S kalasi, Electronic Instrumentation, 3rd Edition, 2011.

Department of Computer Science and Engineering

Subject Title	Programming for Problem Solving (rogramming for Problem Solving (UG Programme)						
Subject Code	24PPS104	CIE Marks	50					
Number of Lecture Hrs / Week	03	SEE Marks	50					
Total Number of Lecture Hrs	40	Exam Hours	03					

1.0

Course Objectives:

- Gain the knowledge of the basic principles of Problem solving. .
- Learn how to use C programming language to specify data and operations on data.
- Understand the concept of decision-making types through programming
- Understand the concept of modularization via functions and 1D and 2-D array .
- Understand and explore systematic techniques and approaches for constructing C Programs using string manipulation functions

2.0

Course Outcomes:

Having successfully completed this course, the student will be able to

Sl. No.	Course Outcome:
CO1	Identify the basic elements of Computing Systems and C Programming Constructs.
CO2	Demonstrate the use of Operators & Expressions, Decision Making and Looping Statements.
CO3	Explore Arrays and User-Defined Functions in Implementing Solutions to Real world Problems
CO4	Illustrate the usage of Storage Classes, Strings and Pointers in Problem Solving.
CO5	Demonstrate the use of Modular Programming Constructs involving Files, Structure & Unions.

3.0	Course Content	
Module 1- Int	roduction to computers: Computer Languages, algorithm and flow charts, Creating and Running	Programs, System Development.
Introduction t	o C programming: Background <mark>, S</mark> tructure of C <mark>Program, C-Tokens,</mark> Identifiers, Data Types, Varia	ables, Constants, Input/ Output.

Formatting Input/Output. Library Functions, Single Character Input –The getchar() , Single Character Output-The putchar.(8 hou	ormatting Input/Output. Librar	ry Functions, Single Chara	acter Input – The getchar()	, Single Character Ou	utput-The putchar.(8 hou
--	--------------------------------	----------------------------	-----------------------------	-----------------------	--------------------------

Module 2- Operators and Expressions: Arithmetic operators, Unary operators, Relational and Logical Operators, Assignment Operators, Conditional Operators. Expressions, Precedence and Associativity, Evaluating Expressions, Type Conversion. Selection - Making Decision: Two Way Selection, Multiway Selection, Repetition: Concepts of a loop, Pretest and Post-test Loops, Initialization and Updating, Loops in C:

The while loop, the do. while loop, The for loop, The break and continue statement, the goto statement. (8hours)

Module 3- Arrays: Concepts, using arrays in C: Declaration and Definition, Accessing Elements in Array, Storing Values in Arrays, processing an array, Sorting and Searching. Two Dimensional Arrays, Functions in C: A brief Overview, defining a Function, User Defined Functions, Function Prototypes, Passing Arguments to a Function, Scope-global and local; Recursion .(8 hours)

Module 4- Storage Classes: automatic variables, external (global) variables, static variables Strings: String Concepts, defining a String, Declaring Strings, Initializing String, Arrays of Strings, String Manipulations Functions Pointers: Pointer Concepts, Pointer Declaration and Definition, Initialization of Pointer Variables, Passing Pointers to a Function, Pointers and Array.(8 hours)

Module 5-Derived Types: Enumerated Types: Declaring an Enumerated Type, Operations on Enumerated Types, Initializing Enumerated Constants. Structures and Unions: Structure Type Declaration, Initialization, Accessing Structures, Structures Containing Arrays, Array of Structures. Unions and Structures. File Handling: Using Binary Files, Reading and Writing a Data File.(8 hours)

a ô co

4.0	Books Recommended to Students	
Textb	ooks:	
1.	Behrouz A. Forouzan, Richard F. Gilberg - Computer science a structured programming approach using (9788131503638, 8131503631, 3rd edition, 2007.	C, Cengage Learning, and ISBN:
2.	A M Padma Reddy -C programming Techniques	
Refer	ence Books:	
1.	E. Bala Guruswamy - Programming in ANSI C, Tata McGraw-Hill, 7th edition,	
2.	2. Reema Thareja - Computer fundamentals and programming in C, Oxford University, 2nd edition, 2017.	
3.	Brian W. Kernighan and Dennis M. Ritchie - The 'C' Programming Language, Prentice Hall of India.	
Addit	ional Study material & e-Books	
1. N	PTEL notes and Videos	
	a lo or set S	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	HER	ANDI	ISCI			-	3	3	-
CO2	3	3	2	1	2	15	Ø	0	5		10	-	3	3	-
CO3	3	3	3 N	2	2	20al	a	4012T	2	T2		7	3	3	-
CO4	3	2	2	2	2	11	-		2	V	T		3	2	-
CO5	3	3	3	2	2	6	9	04	R	A	63 -		3	3	-

UNIVERSAL HUMAN VALUES-II								
[As per NEP, Outcome Based Education	(OBE) and Choice Base	d Credit System (CBCS)	Schemej					
SEMESTER-I/II								
Subject Code 24UHV105/205 CIE Marks								
Number Lecture Hour/Week 2L+1T SEE Marks								
Number of Lecture Hours	4	Exam Hours						
CREDITS-03		- ON SHA	D.					
Course Objectives: Students will be tau	ght to:	2 - aller	No III					
1. To help the students appreciate th	e essential complement	arily between 'VALUES'	and 'SKILLS' to ensure sustained	happiness and				
prosperity which are the core aspira	tions of all human being	S.	No IL					
2. To facilitate the development of a H	Holistic perspective amo	ong students towards life	and profession as well as towards	happiness and				
prosperity based on a correct understan	iding of the Human real	ity and the rest of existen	nce. Such a holistic perspective for	ms the basis of				
Universal Human Values and movement	towards value-based liv	ring in a natural way.						
3. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling								
human behavior and mutually enriching interaction with Nature.								
Module -1	12	A AM		Teaching Hours				
Introduction to Value Education: I	Lecture 1: Right Und	erstanding, Relationship	and Physical Facility (Holistic	8 Hours				
Development and the Role of Education		and the second						
Lecture 2: Understanding Value Educat	ion							
Tutorial 1: Practice Session PS1 Sharin	ng about Oneself	3m	0 511	0				
Lecture 3: Self-exploration as the Proce	ss for Value Education	ಿಣಬಸವೆ		\bigcirc				
Lecture 4: Continuous Happiness and F	rosperity – the Basic Hu	man Aspirations						
Tutorial 2: Practice Session PS2 Explo	ring Human Consciousn	iess	CIPLE	-				
Lecture 5: Happiness and Prosperity –	Current Scenario	CHERAND DIS		1				
Lecture 6: Method to Fulfill the Basic F	Tuman Aspirations	and		D				
Iutorial 3: Fractice Session FS3 Exploring Natural Acceptance								
Module 2 Harmony in the Human Rei	ing (6 lactures and 3 tuto	rials for practice sassion)	100	Q II ound				
Lecture 7. Understanding Human being	ing (0 fectures and 5 tuto	the Self and the Body	41 35 11	o nours				
Lecture 7: Understanding number being as the Co-existence of the Self and the Body								
Tutorial 4: Practice Session PS4 Explor	ing the difference of Neg	eds of Self and Body						
Lecture 9: The Body as an Instrument of the Self								
Lecture 10: Understanding Harmony in the Self								
Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the Self								
Lecture 11: Harmony of the Self with the	Lecture 11: Harmony of the Self with the Body							
Lecture 12: Programme to ensure self-regulation and Health								
Futorial 6: Practice Session PS6 Exploring Harmony of Self with the Body								

Module -3	
Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)	8 Hours
Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction	
Lecture 14: 'Trust' – the Foundational Value in Relationship	
Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust	
Lecture 15: 'Respect' – as the Right Evaluation	
Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect	
Lecture 16: Other Feelings, Justice in Human-to-Human Relationship	
Lecture 17: Understanding Harmony in the Society	
Lecture 18: Vision for the Universal Human Order	
Module -4	
Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)	8 Hours
Lecture 19: Understanding Harmony in the Nature	
Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature	
Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature	
Lecture 21: Realizing Existence as Co-existence at All Levels	
Lecture 22: The Holistic Perception of Harmony in Existence	
Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence	
Module-5	4
Implications of the Holistic Understanding – a Look at Professional Ethics (5 lectures and 2 tutorials for practice	8 Hours
session)	
Lecture 23: Natural Acceptance of Human Values	
Lecture 24: Definitiveness of (Ethical) Human Conduct	
Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct	
Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order	
Lecture 26: Competence in Professional Ethics	-
Lecture 27: Strategies for Transition towards Value-based Life and Profession	2
Tutorial 13: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order	
Course Outcomes: After studying this course, students will be able to:	-
CO-1-Present sustainable solutions to the problems in society and nature	
CO-2-See that these solutions are practicable and draw roadmaps to achieve them.	
CO-3-Grasp the right utilization of their knowledge in their streams of Technology/Engineering/Management/any other a	area of study to
ensure mutual fulfilment. E.g. mutually enriching production system with rest of nature.	
CO-4-Sincerely evaluate the course and share with their friends. They are also able to suggest measures to make the course	e more effective
and relevant.	
CO-5-Make use of their understanding in the course for the happy and prosperous family and society.	
Text Books:	
1. The Textbook - A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagar	ia, 2nd Revised
Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1	
2. The Teacher's Manual-Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur,	R Asthana, G P
Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53	
Reference Books:	
1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.	
2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.	

2024

3. The Story of Stuff (Book).

- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj Pandit Sunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English).

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING(1/2/3):

N	ote:1	l-Low,	2-Medium,	3-High
---	-------	--------	-----------	--------

CO/PO	P0.1	P0.2	P0.3	P0.4	P0.5	PO.6	PO.7	PO.8	PO.9	PO.10	P0.11	P0.12	PSO.1	PSO.2
D1	-	-	-	-	-	3	3	-	1.18	AND I		2	/	/
CO2	-	-	- 10	-	-	3	2	64	-	20	-	2		-
CO3	-	-	-	-	-	2	3	<u>,</u>		(O)	2	2	-	3
CO4	-	-	-				00		3		-	2	2.50	2
CO5	-	-	-	-	-	3	~	1211	-	-		2	00	

Sharnbasva University, Kalaburagi.

SHARNBASVA UNIVERSITY ENGINEERING CHEMISTRY LAB (Common to all branches) (Effective from the academic year 2024-25) Course code: 24CHL106/206 Contact hours /Week: 02 Total Hours: 38 Semester : 1/II

CIE Marks: 50 SEE Marks: 50 Exam hours: 03 Credits: 01

Course Objectives:

Course Objectives: To provide students with practical knowledge of

- Quantitative analysis of materials by classical methods of analysis.
- Instrumental methods for developing experimental skills in building technical competence. Instrumental Experiments
- 1. Potentiometric estimation of FAS using standard K₂Cr₂O₇ solution.
- 2. Conductometric estimation of acid mixture.
- 3. Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.
- 4. Colorimetric estimation of copper.
- 5. Determination of pKa of the given weak acid using pH meter.

Volumetric Experiments

- 1. Estimation of total hardness of water by EDTA complexometric method.
- 2. Determination of Chloride content of water.
- 3. Determination of COD of waste water.
- 4. Preparation of standard solutions related to normality and molarity.
- 5. Determination of percentage of copper in brass using standard sodium thiosulphate solution.

Demonstration Experiments

1. To determine the effect of soap and detergent on the surface tension of water using a Stalagmometer.

- 2. To determine the strength of ferrous ammonium sulphate (Mohr's salt) solution by using external indicator. Course outcomes:
 - After the completion of the course the students will be able to
 - CO1: Learn and apply basic techniques used in chemistry laboratory for small/large scale water analyses/purification.
 - CO2: Estimate the chloride content present in domestic/industry waste water.
 - CO3: Practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses.
 - CO4: Acquire the ability to understand, explain and use instrumental techniques for chemical analysis.

mo lo

2024

CO5: Understand how chemistry addresses social, economical and environmental problems and why it is an integral part of curriculum

Mapping of course outcomes with program outcomes

CIE for the

	PO 1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	РО	РО	PO
			110	\sim	\sim	2.0	\sim	\sim	10	10	11	12
CO1	3	0	V/		2		Y		\sim	0		3
CO2	3	9	100		3				2	\mathcal{D}		3
CO3	3	10		1	3	2	TA					3
CO4	3	ID		05	3	5.07		VA		011		3
CO5	3	11/1		2.0	1	The second		~		111		3

practical component

On completion of every experiment in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.

The 25 marks are divided as, for conducting the experiment 15 and 10 marks for preparation of the laboratory record, individual evaluation (which includes viva voce), (the average of total experiments)

The 25 marks shall be for the test conducted at the end of the semester, for the subject (duration of 1 hour 30 minutes)

SEE for the practical component

- SEE marks for the practical course is 50 marks
- All laboratory experiments are to be included for the practical exam
- Break up marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners
- Students can pick one question (experiment) from the questions lot prepared by the examiners
- General rubrics suggested for SEE are mentioned here, 15% write up, 70% for conduction, procedure and results and 15% for viva voce of maximum marks.
- Practical SEE will be conducted by University as per the scheduled time table, for the subject (duration 03 hours)

Reference Books:

- 1. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, "Vogel's A I, Text Book of
 - Quantitative analysis, Dorling Kindersley (Idia) Pvt. Ltd. 35th Edition 2012.
- 2. O.P. Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age

International Publishers.

3. Gary D. Christian, "Analytical chemistry", 6th Edition, Wiley India.2015

Program [As Per	nming for Problem Solving I NEP Outcome BasedEducat	Laboratory	hoiceBasedCredit	System(CBCS)Scheme]
(Effecti SEMES	vefromthe academic year202 STER–I/ II	24-2025)		
CourseCode		24PPL107/24 PPL207	CIEMarks	50Marks
Number of Lectu	re Hours/ Week	2	SEEMarks	50Marks
ExamHours		VIII	3hours	
CREDI	TS-01	916		V V
Implem	entalltheprogramsin"C"Progra	mmingLanguage	eandLinuxOS/Ubu	ntu. El Santa Callana
Courseobjectives	:	13	A.	
1.	To understand and write simple	ple programs	AL AL	
2.	To develop programs on arith	metic operation	s	and the same the
3.	Understand decision making,	repetitions using	g programming	and the second second
4.	Understand 1-D and 2-D arra	y using program	ming	20 5/1 2
5. C	To develop programs using n	nodularity		and a constants
0. 7	To develop code using indir	III C programmin action referencin	ng	TT I T
7.	To Understand the difference	between unions	8 structures	BAND DISCITA
9.	To develop code using files.	between unions	, su detaies.	
S.No.	ListofExperiments:	2	200	NOVERSIS
1.	Creating and Running Simpl C-Program to demo C-Program to conve	e C Programs. onstrate a Simple ert temperature g	Calculator. given in Celsius to I	Fahrenheit and Fahrenheit to Celsius.
2.	Creating and Running C Pro C-Program to calc quizzes are weight C-Program to dem	grams on Express sulate a student's ed 30%, the mid- onstrate Increme	ssions. s average score for terms 40% and the ent and Decrement	r a course with 4 quizzes, 2 midterms and a final. The final 30%. Operators.

	Creating and Running C Programs on Making Decision.
3.	• C-Program to read a test score, calculate the grade for the score and print the grade.
	• C-Program to uses a menu to allow the user to add, multiply, subtract and divide two numbers using switch
	statement.
	Creating and Running C Programs on Repetition or Loops.
4.	• C-Program to print a number series from 1 to a user-specified limit in the form of a right triangle.
	C-Program to calculate nth Fibonacci number.
_	Creating and Running C Programs on One Dimensional Arrays:
5.	• C-Program to calculate average of the number in an array.
	C-Program to search an ordered list using binary search.
6.	Creating and Running C Programs on Two Dimensional Arrays:
	C-Program to perform addition of two matrices.
	C-Program to perform multiplication of two matrices.
7.	Creating and Running C Programs on User Defined Functions:
	• C-Program to read a number, find whether it is a palindrome or not.
	• C-Program to read a number, find whether it is prime number or not.
8.	Creating and Running C Programs on Strings:
	C Program to Check if the Substring is present in the given String.
	• C-program to demonstrate built-in sting functions like strlen(), strcpy(), strcmp(), strcat().
9.	Creating and Running C Programs on Storage Classes and Pointers:
	C-program to add two numbers using pointers.
	C-Program to read an array of elements and compute their sum using pointers.
10.	Creating and Running C Programs on Unions:
	C-Program to demonstrate union of short int and two char.
11.	Creating and Running C Programs on Structures:
	• C Program to read employee details (name, salary, address) and print the same using structure.
12.	Creating and Running C Programs on Files:
	• C-Program to demonstrate function fread()/fscanf().
	C-Program to demonstrate function fwrite()/fprintf().
	Vaav

Sharnbasva University, Kalaburagi.

MANUFACTURING PRACTICE AND	DIGITAL FABRIC	ATION LAB	fiz.	2 YU		
Course Code	24FAB10	8/24FAB208	14	210	CIE Marks	50
Teaching Hours/Week	L	Т	Р	Total	SEE Marks	50
	0	0	4	4	Total Marks	100
Total Hours of Teaching	48		A	Z	Exam Hours	03
Credits-02	12	[風 周	and and a second second	The		

Course Category: Foundation

Preamble:In the rapidly advancing field of engineering, it is essential for students to develop practical skills that complement their theoretical knowledge. Digital Fabrication, Workshop, and Manufacturing Practice is a foundational course designed to introduce first-year engineering students to the core concepts and hands-on techniques used in modern manufacturing. This course aims to bridge the gap between design and fabrication, fostering an understanding of how raw ideas are transformed into tangible products.

Pre-requisite, if any: Nil

Course Objectives:

- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.
- To have a study and hands-on-exercise on plumbing and carpentry components.
- To have a practice on gas welding, foundry operations and fitting.
- To have a practice on soldering.
- To have a study on measurement of electrical quantities, energy and resistance to earth.

Module No.	Topics	Teaching Hours	RBT Levels
Module-1	Electrical & Electronics: Introduction to basic Electrical and electronic components. Practicals / Lab activities: 1. Parallel/ series connections of three bulbs. 2. Stair case wiring. 3. Make a simple LED circuit 4. Simple water level alarm buzzer circuit.	08	L1, L2, L3
Module-2	Fitting shop: Introduction to marking and fitting processes Practicals /Lab activities: 1. To study different instruments/tools used in fitting shop. 2. To make a square fit from the given mid steel pieces. 3. Demonstration on semi-permanent fastening such as screw, nut,bolts,etc Carpentaryshop : Practicals / Lab activities: 1. To study different instruments/tools used in Carpentry shop. 2. Make a job as per given drawing. (only Cross Half lap joint)	10	L1, L2, L3
Module-3	Plumbing, Plastic Moulding & Glass Cutting: Introductions to plumbing tools, plastic moulding and glass cutting Practicals /Lab activities: 1. To study different instruments/tools used for plumbing. 2. Using tools and materials make T pipe connections. 3. Demo of plastic moulding (virtual). 4. To study different instruments/tools used for glass cuttingand make a job as per given drawing.	10	L1, L2, L3
Module-4	Machine shop: Introduction to different types of machines such as lathe machine, shaper machine, drilling machine, 3D printing, and CNC machines (lathe and milling). Practicals /Lab activities: 1. Practice of Facing, Plane Turning, step turning, taper turning, knurling and parting. 2. Study of Quick return mechanism of Shaper. 3. Turning operation on CNC lathe 4. Demonstration of 3D printing.	10	L1, L2, L3
Module-5	 Welding Shop: Introduction to different joining process like welding, soldering, brazing. Practicals / Lab activities: To make a Butt joint using the given two M.S pieces by arc or TIG welding or MIG welding. Study of soldering and brazing process. Foundry shop: 	10	L1, L2, L3

Casting	: Introduction to casting processes	
Practic	als / Lab activities:	
5.	Demonstration of different tools/equipment's used in casting and demonstration of wax	
	casting.	
1.	Forging a Simple shape	

Text Books:	1. Elements of Workshop Technology:Vol I:Manufacturing Processes, S K	
	Hajra.Choudhury, A K. Hajra Choudhury, 15th Edition Reprinted 2013, Media	
	SHAD	
	Promoters &Publishers Pvt Ltd., Mumbai	
Reference	1. Raghuwanshi B.S., Workshop Technology Vol. I & II, Dhanpath Rai & Sons.	
Books:	2. Kannaiah P. and Narayana K.L., Workshop Manual, 2nd Edn, Scitech publishers.	
	3. John K.C., Mechanical Workshop Practice. 2nd Edn. PHI 2010.	
	4. JeyapoovanT.and Pranitha S., Engineering Practices Lab Manual, 3rd Edn. Vikas Pub.2008	

Conduct of CIE and SEE Examination:

Continuous Internal Evaluation (CIE):

Semester End Examination (SEE):

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Scheme of Semester End Examination (SEE):

ONE question from Module1 or Module 2:20 Marks

ONE question from Module3 or Module 4or module 5:30 Marks

Viva –Voice :10 Marks

Total :50 Marks

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

1. Lecturer method (L) does not mean only the traditional lecture method, but a different type of teaching method may be adopted to develop the outcomes.

- 2. Show Video/animation films to explain concepts
- 3. Encourage collaborative (Group Learning) Learning in the class
- 4. Ask at least three HOTS (Higher-order Thinking) questions in the class, which promotes critical thinking
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develops thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recall it.
- 6. Topics will be introduced in multiple representations.

Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
 Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding.

COURSE	OUTCOMES: At the end of the course the student will be able to:
CO.1	Demonstrate the ability to construct and troubleshoot basic electrical and electronic circuits, including series and parallel connections, wiring, and
	simple alarm systems.
CO.2	Acquire skills in fitting and carpentry by using various tools to create precise components and assemblies according to technical drawings.
CO.3	Apply techniques in plumbing, plastic molding, and glass cutting to assemble pipe connections, simulate molding processes, and produce glass components as per specifications.
CO.4	Acquire skills in operating various machine shop tools and equipment, including lathe, shaper, drilling, milling machines, and CNC lathe, as well as
	3D printing technologies.
CO.5	Demonstrate proficiency in various joining processes, including welding, soldering, and brazing, and apply casting techniques to create simple
	components.
	All of sinding to the

Mapping of the Course	Outcome	es for Co	ourse Co	ode 24FA	B108/2	4FAB208	8 to Pro	gram O	utcomes	T	16				
24FAB108/ 24FAB208	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO.1	3	-	-	ă.	- 1					- 11	-	2			
CO.2	3	-	-	3	-		93	1. 18	-	5	-//	2			
CO.3	3	5	-	- 2	-	20°2	2.hada	See	2-	21	1	2			
CO.4	3		-	-	3		-	-			-	2			
CO.5	3	-	2	- /		CHER	AND	DISCI		/ /	-	2			
1-Low, 2- Medium, and	3- High			0	00	55	25	R	20	0	•	1	•	•	•

SHARNBASVA UNIVERSITY KALABURAGI

SPORTS AND YOGA (24SNY109)

CourseTitle:	SPORTS AND YOG	AD)
CourseCode:	24SNY109	CIEMarks	50
		SEEMarks	50

	(Theory)	TotalMarks	100
Semester:	I/II	and the	
Teaching Hours/Week(L/T)		Exam Hours	02
Total Hours of Pedagogy	20hours	Credits	01
Course objectives • To impart the students with ba	sic concepts of Physical Edu	ucation, Sports and Yoga	and
• Yoga for health and wellness.	Γo familiarize the students v	vith health related Exercises, Sp	orts and
• Yoga for Overall growth & develo	pment To create a foundati	on for the professionals in Spor	ts
	H/ 9	And here	TH N
• Sports and Yoga. To impart the ba	asic knowl <mark>edge</mark> and skills to	teach Physical Education,	4 h
• Sports & Yoga activities.		a state	5
• To familiarize the students w	ith health-related	Exercises, Sports and Yoga	for Overall growth
&development			m
	MODULE1:	All	20
Introduction to: Origin of Sports,	1	20	211
Kaladi' Carro Malia Dala a D	1. China and Davis Chills	ೊಬಸವೇಶ್ವ	T II
Kabaddi Court Marking Rules and Regu	nation and Basic Skills		//
	MODULE2:	AND DISUN	
Basic Concepts of Yoga: Aims, Object	tives, and basic concepts of	Yoga	12
MODULE3:	8 alban	1443	550
Introduction to: Origin of Sports	6 m	om ondigero	20
			J
Volleyball Court Marking Rules and R	egulation and Basic Skills	SPRA)	

 Basic Asanas Pranayama and Surya Samaskara

 MODULE5:

 • Conditioning exercises

 • Rural Games (Lagori, Kuntepille, Breaking the Pot, Human hurdles etc)

 • Intramural Competitions

 • Recreation games

 • Assignments Seminar and Projects

Course	eoutcome
At the	end of the course the student will be able to:
CO1.	Students will be able to understand the basic principles and practices of Physical Education, Sports and Yoga
CO2.	Students will be able to instruct the Physical Activities, Sports and Yoga practices for Healthy Living
CO3.	To develop professionalism among students to conduct, organize & officiate Physical Education, Sports and Yoga events at schools, colleges and community.
CO4	Students will learn to apply knowledge of Physical fitness and exercise management to lead better quality life.
CO5	The students will gain knowledge of professional preparation in Physical Education, Sports and Yoga.
	Assessment Details (both CIE and SEE)
Sugges	ted Learning Resources:
Books (17. D. 18. "A	TitleoftheBook/Nameoftheauthor/Nameofthepublisher/EditionandYear) M Jyoti, Yoga and Physical Activities (2015) lulu.com3101, Hills borough, NC27609, United States Asana, Pranayama, Mudra, Bandha", 1969, Swamy Sathyananda Saraswati, Bihar Yoga Bharati, Munger
Web li	nks and Video Lectures(e-Resources): [If any]https://nss.gov.in/sites/default/files/manualNss2006.pdf
Activit	y Based Learning (Suggested Activities in Class)/Practical Based learning [If any]

Cos and Pos Mapping(Individual teacher has to fill up)											
		PO					0.	~~			
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO2 3 2	1
CO3 3 3 3	
	1
CO4 3 2	1
CO5 3 2 2	1

Subiec	ct Code: 24NSS109	CIE: 50
 Numbe	er of Lecture Hours/Week: 03	SEE: 50
Total N	Number of Lecture Hours: 42	Exam Hours: 03
CRED	VITS - 00	
Course	e Objectives : Cadets will be able to: - Know about the history of NCC, its organize	ation, and incentives of NCC for their careerprospects.
(a) (b) (c) (d) (c) (d) (e) (f) (g) (h)	e Objectives : Cadets will be able to: - Know about the history of NCC, its organize Acquire knowledge of duties and conduct of a Understand about different NCC camps and t Understand the concept of national integration Understand the concept of self-awareness and Understand the concept of critical & creative Understand the process of decision making & Understand the concept of team and its function	ation, and incentives of NCC for their careerprospects. acc cadets. heir conducts. h and its importance. emotional intelligence. thinking. problem solving.

MODULI	E –I NC	C Gene	ral									
•	Introduc	tion of N	VCC, Hist	ory,								L1,L2
•	Aims, O	bjective	of NCC		0	1 -		- 1	0			08 HRS
•	NCC as	Organiz	ation, Inc	entives o	f NCC, D	outies of N	NCC Cade	t.				
•	NCC C	amps: Ty	ypes & Co	onduct.	\bigcirc			5/	R)		
MODULI	E –II Na	ational I	ntegratio	on & Awa	areness			K				
•	Nationa	l Integra	tion: Imp	ortance a	& Necessi	ity, Facto	rs Affecti	ng Nation	al Integr	ation,		
•	Unity i	n Divers	sity					2	2			L1,L2 08 HK
•	Role of	f NCC in	Nation B	uilding,	(9)>						2	
•	Threats	s to Natio	onal Secu	rity.						1		
MODULI	E –III Po	ersonalit	ty Develo	pment		0	101	AP	~	2		
•	Intra & I	Interpers	onal skill	s							11	L1,L2
•	Self-Av	vareness	& Analys	sis, Empa	thy, Critic	cal & crea	ative think	ing,			1	U8 HRS
•	Decisior	n makes a	and proble	em solvin	ıg.						MT.	
MODULI	E –IV : S	Social Se	ervice and	l Comm	inity Dev	elopmen	t			4	N.	
•]	Basics of	f social	service a	nd its nee	ed,		316					L1,L2
• 7	Types of	f social s	service ac	tivities,								09HRS
• (Objectiv	es of rur	al develo	pment		1 25	E.	25 pm		-		
MODULI	E –V Mi	litary H	istory									
• I1	ndian Ar	my										L1.L2
• N	Vavy,							:2 <u>9</u>				09HRS
• A	Air Force	. war He	roes,				APR.					
G		1.0					<u></u>	3		6	y	0
Course ou	utcomes	: After st	tudying th	is course	, students	will be a	ble to;	retur				8
1: Imbibe	e the con	duct of I	NCC cade	ts.			icu co a					
2. Dospoo	t the div	orgity of	different	Indian au	lturo							
2. Respec		ersity of	umerent	mutan cu	inture.	CHEI	AND T	ISCH	1			
3: Practic	e togethe	erness an	d empath	v in all w	alks of th	eir life.						
							(Δ)	050				
4: Do the	ir own se	elf analy	sis and w	ill work o	out to ove	rcome th	eir weakn	ess for be	tter perfo	ormance i	n all aspec	cts of life.
			T	- 2							T	1
5: Do the	social se	ervices o	n differen	t occasio	ns				-	1		
~~~~~			10	1 3				22		2		
CO'S			_		15		-	-	21		-	
	01	03	03	04	05	00	0	08	60	10	11	12
	Р	Ρ	Р	Р	P	A	Р	P	Р	Ρ	Р	<b>d</b>
CO1	2	2	1		100	0	1					
							- Y -					

CO2	2	1	2				1				
CO3	2	2	1		0		2	1	2		
CO4	2	2	2	6	Y	9	2	1	0		
CO5	2	2	1	2	3	X	3	X	6		
			0	10	$\sim$		ACC.	$\sim$	2		

#### **Question Paper Pattern:**

1. The question paper will have ten questions.

2. Each full question consists of 10 marks.

3. There will be 2 full questions (with a maximum of four sub questions) from each module.

4. Each full question will have sub questions covering all the topics under a module.

5. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. NCC Officers Hand Book OTA Kamtee Nagpur.
- 2. Cadet Hand Book DG NCC New Delhi.

#### **REFERENCE BOOKS:**

- 1. NCC Special Subject SD/SW KAR & GOA DTE Bengaluru
- 2. NCC Common Subject SD/SW KAR & GOA DTE Bengaluru

#### **Online Resources:**

- 1. "Size of NCC" (PDF). Archived from the original (PDF) on 2012-05-26. Retrieved 2011-10-28.
- 2. <u>^ "DG NCC | National Cadet Corps | India"</u>.
- 3. <u>^ "President Ram Nath Kovind presents Shaurya Chakra to Lt Col Vikrant Prasher"</u>. Odisha Diary. Retrieved 2023-03-17.
- 4. <u>^ "Handbook NCC"</u> (PDF). Directorate of Tamil Nadu.
- 5. <u>^ "Paramilitary Forces of India"</u>. Mr.M.C. Sharma.

#### NATIONAL SERVICE SCHEME

CourseTitle:	NATIONAL SERVICE SCHEME		
CourseCode:	24NSS109	CIEMarks	50
Course Type	and a start	SEEMarks	50
	(Theory)	TotalMarks	100
Semester:	I/II		
TeachingHours/Week(L/T)	1	ExamHours	02

TotalHoursofPedagogy	20hours	Credits	01
Courseobjectives	$\sim$	-	
National Service Scheme (NSS) will enable	ble the students to:	6	
• Understand the community in general in v	which they work.	No	
• Identify the needs and problems of the co	mmunity and involve them in	n problem –solving.	
• Develop among themselves a sense of s	social & civic responsibility	& utilize their knowledge in	finding practical solutions to
individual and community problems.		en la	
• Develop competence required for group-	living and sharing of respons	ibilities & gain skills in mobili	zing community participation
to acquire leadership qualities and democ	ratic attitudes.	RADO	
• Develop capacity to meet emergencies an	d natural disasters & practice	national integration and social	harmony in general.
411 8		No It	
		S Z V	
MODI			
Introduction to NSS:History, aims, objectives,	and basic concepts.Motto,	symbol, and significance of I	NSS.Organizational structure,
duties, and roles of volunteers and officers.			
MOI	DULE2:		
<b>Basic Concepts of NSS:</b> Understanding the philos	sophy and fundamental prince	ciples of NSS. Importance of r	ational integration and
MODULE3:	la social justice.	2 9/	0
Youth and Community Development: Role of	youth in society and con	munity building. Leadershi	p skills and team building.
Challenges faced by rural and urban communit	ies.		P
Environment and Sustainability:	CHER AND DIS	CIPLE	
Understanding the importance of environmenta	ll conservation.	Do	
Role of NSS in promoting sustainable developm	ent and ecological balance.	100	
MO	DULE4:	41 35	7
Health, Hygiene, and Sanitation:			
Importance of health education.			/
Practices for good hygiene and sanitation	molo	200	
Basic awareness of public health issues a	nd preventive measures.	10	
Social Issues and Responsibilities:	200		
Awareness of current social issues like gender ine	quality, literacy, and environ	mental degradation.	

	MODULE5:
Disas	ster Management:
•	Introduction to disaster preparedness and management.
•	Role of NSS volunteers in disaster relief activities.
Volu	nteering and Community Service:
Plan	ning and organizing community service projects. Participation in social campaigns like Swachh Bharat Abhiyan, blood
dona	tion drives, and health camps.
Field	work and Practical Engagement:
•	Attending fieldwork in community service.
•	Participating in NSS special camps and events.
•	Field visits to rural or urban areas to understand local issues.

Course	outcome
Attheer	adofthecourse thestudentwillbeableto:
CO1.	Understand the importance of his / her responsibilities towards society.
CO2.	Analyse the environmental and societal problems/issues and will be able to design solutions for the same.
CO3.	Evaluate the existing system and to propose practical solutions for the same for sustainable development.
CO4.	Implement government or self-driven projects effectively in the field.
CO5.	Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general.
	Assessment Details (both CIE and SEE)
Sugges Books( 19. N	tedLearningResources: TitleoftheBook/Nameoftheauthor/Nameofthepublisher/EditionandYear) SS MANUAL - https://nss.gov.in/sites/default/files/manualNss2006.pdf
Weblir	ksandVideoLectures(e-Resources): [If any]https://nss.gov.in/sites/default/files/manualNss2006.pdf
Activit	yBasedLearning(SuggestedActivitiesinClass)/PracticalBasedlearning [If any]

			COsand	IPOsMa	pping(Iı	ndividua	lteacher	hastofill	up)			
			РО					1	<u></u>			
	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3			1	110	0	6	110		1
CO2	3	2				6		1		11/	0	1
CO3	3	3	3						1		_	1
CO4	3	2				100	X	5		>	6	1
CO5	3	2			21	2				$\mathbb{N}$		1



Open Elective	Subject: INTRODUCTION	N TO MUSIC			
[As per Choi	ce Based Credit System (CBC	CS) scheme]			
(Effectiv	e from the academic year 202	22-2023)	T	N	
	Semester I	Val	(1 c	×	
Subject Code	22AEC161/261	CIE 5	50	0	
Number of Lecture Hours/Week	12	SEE 5	50	R	
	48		100	0	
CREDITS-03	19/200		$\sim$	281	
(			~	RANC	
Open Elective Subject: BASIC MUSIC -I	314	0.1.1		ALE	<i>)</i>
Unit_1:	(C) / . 03	Teaching Ho	urs	RBT LEVEL	
MUSIC TECHNICAL TERMS	17 200	10	51		
		Station .			
4		A LATE		10	12
Unit_2:		Teaching Ho	urs	RBT LEVEL	
BASIC TABALA TAALS		10			No
		54000			
	E be			5	
Unit_3:	13	Teaching Ho	ours	RBT LEVEL	
TAALS TECHNICAL AND DETAILS OF T	THE TAAL	10		I	
		A State of the	T		
	13 B 2 M	111 " " and "		11	1
Unit_4:	a gran	Teaching Ho	urs	RBT LEVEL	/
SARIGAMA GEETA FROM BELOW RAC	GAS 1 BHUPALI, 2	10	3	21	5 B
DURGA, 3 BHIMPALAS .	No Oc	323753023	5		6
6				T	
Unit_5:	(EDOW)	Teaching Ho	urs	<b>RBT LEVEL</b>	_
BHUPALI RAGA CHOTA KHAYAL IN TE	EN TAAL .	08	-		
		who who	0		
	9.000	Ima		1	
Outcome of the subject:					
tre	S CODer-			3	11
After successfully competition of the course, s	tudent will be able to			110	3/1
1 Understanding of PASIC MUSIC			_	1	
The shiller to SINC TO DEMONSTRATE					
2 The ability to SING, TO DEMONSTRATE.			DUD		
3 Knowledge & skill in the use of basic tools I	LIKE HARMONIUM AND T	ABALA ,TAAN	PURA	4.	
4 The ability to explore the expressing possibil	lities of various media.	and and	~		

- 5 The ability to make OR PRESENT independently.
- Knowledge of both theory and practical.

Course Title:	Engineering Mathematics-2 for CSS		
Course Code:	24MATS201	CIE Marks	50
Course Type(Theory/Practical/Integrated)	Integrated	SEE Marks	50
	GILLAND	Total Marks	100
Teaching Hours/Week (L: T:P)	3:2:0	Exam Hours	03
Total Hours of Pedagogy	36 Hours Theory and 12Hours	Credits	04
	Tutorial/practice	19	
Course objectives: The goal of the course Engi	neering Mathematics-2 for CSS (24MATS201)	is to	
• Understand the concept of multiple int	egrals and Vector spaces.	3))	
Remember engineering problems apply	ring Partial Differential Equations.	NIL	
• Apply the knowledge of solving engine	ering problems numerically.	411	
<ul> <li>Pedagogy (General Instructions):</li> <li>These are sample Strategies, which teachers can</li> <li>1. In addition to the traditional lecture met lessons shall develop student's theoretic</li> <li>2. State the need for Mathematics with Eng</li> </ul>	use to accelerate the attainment of the various hod, different types of innovative teaching mo cal and applied mathematical skills. gineering Studies and Provide real-life exampl	as course outcomes. ethods may be adopted so es.	that the delivered
3. Support and guide the students for self-	study.		
4. Student progress can be monitored thro	ugh internal assessment by the course teache	r.	
5. Two assignments on each module.	Va Constant		
6. Encourage the students for group learning	ng to improve their creative and analytical ski	llis.	
7. Show short related video lectures in the	tonowing ways:		
<ul> <li>As an introduction to new topics (pre-legence)</li> <li>As a revision of topics (post lecture active)</li> </ul>	ritule activity).		
10 As additional examples (post-lecture active	ivity).		

- 10. As additional examples (post-lecture activity).11. As an additional material of challenging topics (pre-and post-lecture activity).12. As a model solution of some exercises (post-lecture activity).

**Course outcome (Course Skill Set)** At the end of the course the student will be able to:

CO1	Understand the concept of ordinary differential equation.												
CO2	Learn the concept of multiple Integrals.												
CO3	Learn and apply the basic concept of numerical methods.												
<b>CO4</b>	Able to solve problems in complex variable.												
CO5	Apply the knowledge of Linear Algebra to solve problems on Linear Transformation.												
					0	16	Bloor	n's Level					
--------------------------------	--------------	-----------	----------	--------------------	-----------------------	--------------	--------------	------------	---------	--------	---------	--------	------------
<b>CO</b> #	I	Remembe	er (L1)	Unde	erstand (	[L2)	Appl (L3)	y )	Analyzo	e (L4)	Evaluat	e (L5)	Create (L6
CO1				1		~		Z	9				
CO2				01					NU.	~			
CO3				(V)	$\checkmark$				EVI	5)			
<b>CO4</b>				Y	$\checkmark$	00	$\leq $	1		$\leq$			
CO5				In		2		RA		111			
ourse Ar CO#	ticulatio	n Matrix	/ Course	e mapping	g:	Yas			v v				1
CO#	P01	P02	P03	P04	PO5	P06	P07	P08	604	P010	P011	P012	
CO1	3	1				100 mm	1.1.1	1	2			1	-
CO2	3	1		1 8	8	-	1 200	2	S		0255	1	
CO3	3	3				300	1.00	S.	N		8	1	
CO 4	3	2	2		~~		curosu.	- 1975 - C	T	0	S	1	
LU4	3	1	1		1	Acure	1	21912				1	_
C04 C05		16				C ILB	AND BI	0				1	
CO5 AVG	3	1.0											
CO4 CO5 AVG ote: 1-Lo	3 w mappe	d, 2-Medi	um mapp	oed, 3-Hig	h mappe	d		20		0			
CO4 CO5 AVG ote: 1-Lo	3 w mappe	d, 2-Medi	um mapp	oed, 3-Hig Modu	h mappe lle-1 : Ol	d RDINARY	DIFFERE	ENTIAL E	QUATION	S			

#### Module-2 : MULTIPLE AND IMPROPER INTEGRAL.

Introduction to Integral Calculus in Computer Science Engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications of double and triple integral and Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.

**Self-Study / Tutorial: Python Program:**Evaluation of Double and triple integrals, Evaluation of Beta and Gamma functions.

Applications: Applications to mathematical quantities (Area, Surface area, Volume). Analysis of probabilistic models. (10 hours)

(RBT Levels: L1, L2 and L3)

Module-3: NUMERICAL METHODS-1

#### Importance of numerical methods for discrete data in the field of Computer science and engineering applications.

Solution of algebraic and transcendental equations: Regula- Falsi and Newton-Raphson methods (only formulae). Problems. Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems.

Self-Study / Tutorial: Python Program: Finding the roots by Newton Raphson and Regula- Falsi method.

**Applications:** Power Systems

(RBT Levels: L1, L2 and L3)

(09 hours)

Module-4 : COMPLEX VARIABLE- I

#### Introduction to Complex variable in Computer Science & Engineering.

Function of a complex variable, limits, continuity, differentiability, Analytic functions-Cauchy-Riemann equations in Cartesian and polar forms. Properties and construction of analytic functions.

Self-Study / Tutorial: Python Program: Finding the analytic function and Harmonic conjugate.

Applications: Network analysis, Signal Processing, and Image Processing.

(RBT Levels: L1, L2 and L3)

#### Module-5 : ADVANCED LINEAR ALGEBRA

Importance of Vector Space and Linear Transformations in the field of Computer science and engineering and its applications. Definitions of Groups, rings and fields. Vector spaces: Definition and examples, subspace, linear span, linearly independent and dependent sets, Basis and dimension.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation, Change of coordinates, Rank and nullity of a linear operator, Rank-Nullity theorem (Statement only).

**Self-Study / Tutorial: Python Program:** Evaluation of linearly dependent and linearly independent.

Applications: Image processing, AI & ML, Graphs and networks, computer graphics.

(RBT Levels: L1, L2 and L3)

(09 hours)

(10 hours)

#### **Assessment Details (both CIE and SEE)**

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum passing marks for the SEE is 35%

of the maximum marks out of 100 marks (18 marks out of 50 marks).
A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course
if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination (SEE), and a minimum of 35%
(35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken
together.
Continuous Internal Evaluation (CIE): The CIE shall be conducted by the course teacher throughout the compositor The CIE marks for the theory component of the CIE shall
be 50 marks.
The CIE marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:
<ul> <li>Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with the same syllabus of CIE-2 (on the need basis of students).</li> </ul>
<ul> <li>Average of best two performances of the Internaltests shall be considered for 25 marks.</li> </ul>
Session wise assignments for 10 marks
•For relevant other activities (Eg. Seminar, field work, Math Lab, activity report etc) 10 marks
•Attendance 5 marks (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)
Semester End Examination (SEE)
•The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
•The question paper will have ten full questions carrying equal marks.
•Each full question carries 20 marks.
•There will be two full questions (with a maximum of three sub questions) from each module
• Each full question will have sub questions covering all the topics under a module.
•The students will have to answer five full questions, selecting one full question from each module.
Suggested Learning Resources:
Text Books
7. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44 th Ed., 2021.
8. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.
Reference Books
22. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
23. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3 rd Ed., 2016.
24. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
25. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw–Hill Book Co., New York,
6 th Ed., 2017
26. C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
27. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
28. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018

# Sharnbasva University, Kalaburagi.

Course Title:	Engineering Mathematics 2 for EES		
Course Title:	24MATE201	CIE Marka	EO
		SEE Marks	50
Course Type(Theory/Practical/Integrated)	Integrated	Total Marks	100
Teaching Hours/Week (L: T:P)	3:2:0	Exam Hours	03
Total Hours of Pedagogy	36 Hours Theory and 12 Hours	Credits	04
	Tutorial/practice		

Course objectives: The goal of the course Engineering Mathematics-2 for EES.(24MATE201) is to

- Understand the importance of multiple integrals and Ordinary Differential Equations.
- Remember electronics and electrical engineering problems applying Partial Differential Equations.
- Apply the knowledge of Laplace Transforms to solve engineering problems.

#### **Teaching-Learning Process**

#### Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. Student progress can be monitored through internal assessment by the course teacher.
- 5. Two assignment on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
- 8. As an introduction to new topics (pre-lecture activity).
- 9. As a revision of topics (post-lecture activity).
- 10. As additional examples (post-lecture activity).
- 11. As an additional material of challenging topics (pre-and post-lecture activity).
- 12. As a model solution of some exercises (post-lecture activity).

#### Course outcome (Course Skill Set)

At the end o	f the course the student will be able to:
CO1	Understand the concept of ordinary differential equations.
<b>CO2</b>	Learn the concept of multiple Integrals.
CO3	Learn the basic concept of numerical methods.
<b>CO4</b>	To understand the concept of Laplace transform and Initial value problems.

		om's Lev	zel										
CO#	Re	member	(L1)	Under	stand (L2	2)	A	pply L3)	Analyse	(L4)	Evaluate	e (L5)	Create (L6
CO1				- J		/			NUS S	2			
CO2				R	19	[			1919	$\mathcal{S}$			
CO3				Y	1		SH		12	1			
C <b>O</b> 4				10	V		-		1	11			
CO5					~		N.C.		8				
ourse Ar	ticulatio	n Matrix	O / Cours	e mappinį	g:	64		2					
ourse Ar CO#	ticulatio	n Matrix	/ Cours	e mapping	g: 02	90	02	80	60	010	011	012	
ourse Ar CO#	ticulatio	n Matrix CO 1	/ Cours	e mapping	g: 504	P06	P07	POB	P09	P010	P011	P012	
00000000000000000000000000000000000000	ticulatio	n Matrix	/ Cours	e mapping	PO5	P06	PO7	P08	P09	P010	P011	<b>P012</b>	
ourse Ar CO# CO1 CO2 CO3	ticulatio	n Matrix CO 1 1 3	/ Cours	e mapping	g: DO2	PO6	PO7	P08	P09	P010	P011	<b>D012</b>	
ourse Ar CO# CO1 CO2 CO3 CO4	ticulatio	n Matrix <b>CO</b> 1 1 3 2	/ Cours	e mapping	E DO2	PO6	PO7	P08	60d	P010	P011	<b>P012</b>	
CO# CO# CO2 CO3 CO4 CO5	ticulatio	n Matrix <b>CO</b> 1 1 3 2 1	/ Cours	e mapping	g: 500	PO6	PO7	800	60d	P010	P011	<b>D012</b>	
CO# CO# CO2 CO3 CO4 CO5 AVG	ticulatio	n Matrix <b>CO</b> 1 1 1 3 2 1 1.6	/ Cours	e mapping	E FOS	PO6	PO7	P08	60d	P010	P011	<b>b012</b>	
ourse Ar CO# CO1 CO2 CO3 CO4 CO5	ticulatio	n Matrix CO 1 3 2	/ Cours	e mapping	g: 500	PO6	PO7	P08	60d	P010	P011	<b>b012</b>	

Method, Variation of Parameters method, applications of Differential equations LCR Circuits. **Self-Study / Tutorial: Python Program:** Finding the roots for second order ODE, Finding the roots by the method of variation of parameter.

Applications: Application of second order ODE, initial conditions and initial value problems.
(RBT Levels: L1, L2 and L3) (10 hours)
Module-2 :MULTIPLE AND IMPROPER INTEGRALS.
Introduction to Integral Calculus EC and EE Engineering applications.
Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into
polar coordinates. Applications to find: Area and Volume by double integral. Problems.
Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.
Self-Study / Tutorial: Python Program: Evaluation of Double and triple integrals, Evaluation of Beta and Gamma functions.
Applications: Applications to mathematical quantities (Area, Surface area, Volume). Analysis of probabilistic models.
(RBT Levels: L1, L2 and L3) (10 hours)
Module-3: NUMERICAL METHODS-I
Importance of numerical methods for discrete data in the field of EC and EE engineering applications.
Solution of polynomial and transcendental equations: Regula-Falsi method and Newton-Raphson method (only formulae). Problems.
Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and
Lagrange's interpolation formula (All formula <mark>e wit</mark> hout pro <mark>of). Problems.</mark>
Self-Study / Tutorial: Python Program: Finding the roots by Newton Raphson and Regula Falsi method.
Applications: Power Systems.
(RBT Levels: L1, L2 and L3) (09 hours)
Module- <mark>4 : LAPLACE TRANS</mark> FORMS
Introduction to Laplace Transforms in EC and EE Engineering.
Laplace Transforms: Definition, Laplace transforms of Elementary functions, properties (without proof) periodic function, Unit step
function, Unit impulse function.
<b>Inverse Laplace Transforms:</b> Definition, Convolution Theorem (without proof) and Finding Inverse Laplace transform by convolution
Theorem. Solution of Linear Differential equations using Laplace Transforms and Applications.
Self-Study / Tutorial: Python ProgramLaplace transforms of ODE and Convolution theorem.
Applications: Network analysis, Signal Processing, and Image Processing.
(RBT Levels: L1, L2 and L3) (10 hours)
Module-5: VECTOR SPACE
Importance of Vector Space and Linear Transformations in the field of EC and EE engineering applications.
Vector spaces: Definition and examples, subspace, linear span, linearly independent and dependent sets, Basis and dimension.
Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation. Change of coordinates,
Rank and nullity of a linear operator, Rank-Nullity theorem. Inner product spaces and orthogonality.
Self-Study / Tutorial: Python Program: Evaluation of linearly dependent and linearly independent.
<b>Applications:</b> Image processing, Graphs and networks, computer graphics, Antenna.
(RBT Levels: L1, L2 and L3) (09 hours)
Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing
marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum passing marks for the SEE is 35% of the
maximum marks out of 100 marks (18 marks out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination (SEE), and a minimum of 35% (35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### <u>Continuous Internal Evaluation(CIE):</u>

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the CIE shall be 50 marks.

The CIE marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:

- Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with the same syllabus of CIE-2 (on the need basis of students).
- Average of best two performances of the Internaltests shall be considered for 25 marks.
- Session wise assignments for 10 marks
- •For relevant other activities (Eg. Seminar, field work, Math Lab, activity report etc) 10 marks

•Attendance 5 marks (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)

#### <u>Semester End Examination (SEE)</u> (

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

#### **Suggested Learning Resources:**

Text Books

9. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.

10. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

**Reference Books** 

29. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017

**30. Srimanta Pal & Subodh C. Bhunia**: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.

**31.** N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.

32. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New York,

6thEd., 2017

**33. C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.

34. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.

**35. David CLay:** "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018

Course Title:

Engineering Mathematics-2 for CES.

Course Code:	24MATC201	CIE Marks	50
Course Type(Theory/Practical/Integrated)	Integrated	SEE Marks	50
	no G	Total Marks	100
Teaching Hours/Week (L: T:P)	3:2: 0	Exam Hours	03
Total Hours of Pedagogy	36 Hours Theory and 12 Hours	Credits	04
	Tutorial/practice		

**Course objectives: The** goal of the course Engineering Mathematics-2 for CES.(**24MATC201**) is to

- Understand the importance of Integral calculus and Vector calculus essential for Civil engineering.
- Remember Civil engineering problems applying Partial Differential Equations.
- Apply the knowledge of solving Civil engineering problems numerically.

#### **Teaching-Learning Process**

#### Pedagogy (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. Student progress can be monitored through internal assessment by the course teacher.
- 5. Two assignments on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
- 8. As an introduction to new topics (pre-lecture activity).
- 9. As a revision of topics (post-lecture activity).
- 10. As additional examples (post-lecture activity).
- 11. As an additional material of challenging topics (pre-and post-lecture activity).
- 12. As a model solution of some exercises (post-lecture activity).

#### Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Understand the various physical modules through higher differential equations and solve such linear ordinary differential
	equations.
CO2	Learn and apply the concepts Partial differential equation and their solutions for physical interpretations.
CO3	Learn and apply the basic concept of numerical methods.

CO5       Understand the applications of vector integration.         Bloom's level         CO#       Remember (L1)       Understand (L2)       Apply       Analyse (L4)       Evaluate (L5)       Cr         C01 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	
Bloom's level of the course outcomes:           Bloom's Level           CO#         Remember (L1)         Understand (L2)         Apply (L3)         Analyse (L4)         Evaluate (L5)         Cr           CO1         √         √         √         √ <td< td=""><td></td></td<>	
Bloom's LevelCO#Remember (L1)Understand (L2)ApplyAnalyse (L4)Evaluate (L5)CC01 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ C02 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ C03 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ C04 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ Course Articulation Matrix / Course mapping:Course Articulation Matrix / Course mapping:C04 $\frac{8}{2}$ $\frac{8}{2}$ $\frac{9}{2}$ <	
CO#       Remember (L1)       Understand (L2)       Apply (L3)       Analyse (L4)       Evaluate (L5)       Cr         C01       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V	
$CO1$ $$ $$ $$ $$ $$ $$ $CO2$ $$ $$ $$ $$ $$ $$ $$ $CO3$ $$ $$ $$ $$ $$ $$ $$ $CO4$ $$ $$ $$ $$ $$ $$ $$ $CO5$ $$ $$ $$ $$ $$ $$ $$ $CO#$ $\overline{D}$ <th< td=""><td>eate (L6)</td></th<>	eate (L6)
$CO2$ $$ $\sqrt{$ $$ $\sqrt{$ $\sqrt{$ $\sqrt{$ $\sqrt{$ $\sqrt{$ $\sqrt{$ $$ $\sqrt{$ $$ $\sqrt{$ $$ $$ $\sqrt{$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	
CO3 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ <th< td=""><td></td></th<>	
CO4 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ <th< td=""><td></td></th<>	
CO5       V       V       V       V       V         Course Articulation Matrix / Course mapping:         CO#       EQ       Note       Solution Matrix / Course mapping:       Solution Matrix / Course mapping:       Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
Course Articulation Matrix / Course mapping:         CO#       To       <	
Course Articulation Matrix / Course mapping:         CO#       I       No       I       SO       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <thi< th="">       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       <thi< th="">       I       I       I<td></td></thi<></thi<>	
CO#TONoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo <td></td>	
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	
CO1       3       1       1         CO2       3       1       1         CO3       3       3       1       1         CO4       3       1       1       1         CO5       3       2       1       1         AVG       3       1.6       1       1         Note: 1-Low mapped, 2-Medium mapped, 3-High mapped       1       1         Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli         Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
CO23111CO333011CO431111CO532111AVG31.6111Note: 1-Low mapped, 2-Medium mapped, 3-High mapped111Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDERIntroduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appliSolution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
CO33311CO431111CO532111AVG31.6111Note: 1-Low mapped, 2-Medium mapped, 3-High mapped111Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDERIntroduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appliSolution of second and higher order for handling Civil Engineering appli	
CO4       3       1       1         CO5       3       2       1       1         AVG       3       1.6       1       1         Note: 1-Low mapped, 2-Medium mapped, 3-High mapped       1       1         Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDER       1         Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli         Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
CO5       3       2       1         AVG       3       1.6       1         Note: 1-Low mapped, 2-Medium mapped, 3-High mapped       1         Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDER         Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli         Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
AVG       3       1.6       1         Note: 1-Low mapped, 2-Medium mapped, 3-High mapped       Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDER       1         Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli       Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
Note: 1-Low mapped, 2-Medium mapped, 3-High mapped Module-1: ORDINARY DIFFERENTIAL EQUATION OF HIGHER ORDER Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
Introduction to Linear ordinary differential equations of second and Higher order for handling Civil Engineering appli Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	
Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Oper	ations.
	ator
Method, Variation of Parameters method, applications of Differential equations related to civil engineering.	
	_
Self-Study / Tutorial: Python Program: Finding the roots for second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the method of variation of the second order ODE, Finding the roots by the second order ODE, Find	f
parameter.	
(PRT Levels: 1.1.1.2 and 1.2)	
(RDT Levels: L1, L2 and L5) (TO nours) Module-2: PARTIAL DIFFERENTIAL FOUNTIONS	
Importance of partial differential equations for Civil Engineering application.	
Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration	1.
Homogeneous PDEs involving derivative with respect to one independent variable only. Solution of Lagrange's linear PDE. Deriv	ation of
one-dimensional heat equation and wave equation.	

2024

<b>Self-Study / Tutorial: Python Program:</b> Solution of PDE by direct integration, Formation of PDE with respected to one independent
variable.
Applications: Design of structures (vibration of rod/membrane).
(RBT Levels: L1, L2 and L3) (10 hours)
Module-3: NUMERICAL METHODS
Importance of numerical methods for discrete data in the field of Civil Engineering.
Solution of algebraic and transcendental equations: Regula- Falsi and Newton-Ranhson methods (only formulae) Problems
Finite differences Internalation using Newton's forward and backward difference formulae Newton's divided difference formula and
Lagrange's interpolation formula (All formulae without proof). Problems
Lagrange's interpolation formula (All formulae without proof). Froblems.
Numerical integration: Trapezoidal, Simpson's (1/3) th and (3/8) th rules (without proof). Problems.
Salf Study / Tutorial Buthan Brogram, Neuton's forward and Backward internalation formula Solution of numerical integration by
Simpson's (1/2)rd rule
Simpson's (1/3) ^{ra} rule.
Applications: Estimating the approximate roots, extreme values, Area, volume, surface area. Finding approximate solutions to engineering
problems.
(RBT Levels: L1, L2 and L3) (09 hours)
Module <mark>-4: MULTIPLE INTE</mark> GRALS.
1 1 A A A A A
Introduction to Integral Calculus in Civil Engineering applications.
Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into
polar coordinates. Applications to find: Area and Volume by double integral. Problems.
Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions, Problems,
B C C
<b>Self-Study / Tutorial: Python Program:</b> Evaluation of Double and triple integrals, evaluation of Beta and Gamma functions,
Annlications: Annlications to mathematical quantities (Area Surface area Volume) Analysis of probabilistic models
(PRT Levels: 1 1 2 and 1 2)
(INDI LEVEIS, LI, LZ and LS) [10 nours] Modulo E : VECTOD INTECDATION
MOULIE-5: VECTOR INTEGRATION
Introduction to vector calculus in civil Engineering applications.
Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and flux. Statement of Green's theorem, Stoke's
theorem and Gauss divergence theorem and Problems.
a constant and as The
Self-Study / Tutorial: Python Program: Finding surface integrals, Evaluation of surface area by Green's theorem.
Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Analysis of stream lines.
(RBT Levels: L1, L2 and L3) (09 hours)
Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing
marks for the CIE is 50% of the maximum marks (25 marks out of 50 marks). The minimum passing marks for the SEE is 35% of the
maximum marks out of 100 marks (18 marks out of 50 marks).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course

if the student secures not less than 35% (18 Marks out of 50 marks) in the semester-end examination (SEE), and a minimum of 35% (35 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

#### Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the CIE shall be 50 marks.

The CIE marks for the theory component shall be 50 marks and scored will be reduced to 25 marks as below:

- Two Tests as CIE-1 after completion of 50% of syllabus followed with improvement test-1 with the same syllabus of CIE-1 (on the need basis of students) and CIE-2 after completion of remaining 50% of syllabus followed with improvement test-2 with the same syllabus of CIE-2 (on the need basis of students).
- Average of best two performances of the Internal tests shall be considered for 25 marks.
- Session wise assignments for 10 marks
- •For relevant other activities (Eg. Seminar, field work, Math Lab, activity report etc) 10 marks
- •Attendance 5 marks (95% to 100% of attendance) and 04 marks (85% to 94% of attendance)

#### Semester End Examination (SEE)

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

#### Suggested Learning Resources:

**Text Books** 

**11. B.S.Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.

**12. E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

#### **Reference Books**

- 36. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- **37. Srimanta Pal & Subodh C. Bhunia**: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- **38. N.P Bali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications,10th Ed.,2022.
- 39. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New York,

#### 6thEd., 2017

- **40. C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- **41. James Stewart: "**Calculus" Cengage Publications, 7thEd., 2019.
- **42. David CLay:** "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018



#### ENGINEERING CHEMISTRY FOR COMPUTER SCIENCE ENGINEERING STREAM

#### Syllabus

#### Semester: II

Course Title:	Engineering Chemistry for CSS					
Course Code:	24CHES202	CIE Marks	50			
Course Type	1 ×	SEE Marks	50			
course Type	(Theory)	Total Marks	100			
Teaching Hours/Week (L/T)		ExamHours	3			
Total Hours of Pedagogy	40 hours	Credits	3			
ırse objectives		0				
• To enable students to acquire know	owledge on principles of chemis	stry for engineeringapplicati	ons.			

- To develop an intuitive understanding of chemistry by emphasizing the relatedbranches of engineering.
- To provide students with a solid foundation in analytical reasoning required to solvesocietal problems.

#### **Teaching-Learning Process**

These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching–Learning more effective

- Flipped class
- Smart class room
- Blended mode of leaning
- Interactive simulations and animation
- Tutorial & remedial classes for needy students (not regular T/R)
- Conducting Makeup classes
- Demonstration of concepts either by building models or by industry visit
- Experiments in laboratories shall be executed in blended mode (conventional or non-conventional methods)
- Use of ICT Online videos, online courses
- Daily learning through assignments

#### MODULE 1: Energy Storage Systems and Sensors

(8hr)

**Energy Storage Systems**: Introduction to batteries, construction, working and applications of Ni-MH battery, Lithium ion and Sodium ion batteries.

**Sensors**: Introduction, working principle and applications of Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Sensors for the measurement of dissolved oxygen (DO). Electrochemical gas sensors for SOx and NOx.

#### MODULE 2: Display and Memory Systems

(8hr)

**Display Systems**: Photoactive and electroactive materials, Nanomaterials and organic materials used in optoelectronic devices. Liquid crystals (LC's) - Introduction, classification, properties and application in Liquid Crystal Displays (LCD's). Properties and application of Organic Light Emitting Diodes (OLED's) and Quantum Light Emitting Diodes (QLED's), Lightemitting electrochemical cells.

**Memory :** Introduction, Basic concepts of electronic memory, History of organic/polymer electronic memory devices, Classification of electronic memory devices,

#### 1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hour

types of organic memory devices (organic molecules, polymeric materials, organic- inorganic hybrid materials).

# MODULE 3: Electrode System and Corrosion(8hr)Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion-differential metal and<br/>differential aeration. Corrosion control - galvanization, anodization and sacrificial anode method. Corrosion<br/>Penetration Rate (CPR) - Introduction and numerical problem.Electrode System: Introduction, types of electrodes. Ion selective electrode – definition, construction, working and<br/>applications of glass electrode. Determination of pH using glass electrode. Reference electrode - Introduction, calomel<br/>electrode – construction, working and applications of calomel electrode. Concentration cell– Definition, construction<br/>and Numerical problems.

#### MODULE 4: Green Fuels and Polymers (8hr)

**Green Fuels:** Introduction, construction and working of solar photovoltaic cell, advantages, and disadvantages. Generation of energy (green hydrogen) by electrolysis of water and its advantages.

**Polymers:** Introduction, Molecular weight - Number average, weight average and numerical problems. Conducting polymers – synthesis and conducting mechanism of polyacetylene and commercial applications. Preparation, properties, and commercial applications of graphene oxide.

#### MODULE5: Analytical Techniques and E<mark>-Waste Managemen</mark>t (8hr)

Analytical Techniques: Introduction, principle and instrumentation of Conductometry; its application in the estimation of weak acid. Potentiometry; its application in the estimation of iron.

**E-Waste:** Introduction, sources of e-waste, Composition, Characteristics, and Need of e- waste management. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery: Different approaches of recycling (separation, thermal treatment)

#### Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1.	Identify the terms and processes involved in scientific and engineering
	Applications
CO2.	Explain the phenomena of chemistry to describe the methods of engineeringprocesses
CO3.	Solve for the problems in chemistry that are pertinent in engineering applications
CO4.	Apply the basic concepts of chemistry to explain the chemical properties and processes

CO5.	Analyze properties and Processes associated with chemical substances in
	multidisciplinary situations
Asse	ssment Details (both CIE and SEE)
	The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is
	50%. The minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50). The
	minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).
	Continuous Internal Evaluation(CIE):
	The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are:
	The CIE marks for the theory component shall be 50 marks is as detailed below:
	• Four tests each of 25 Marks; (Third and fourth tests are improvement tests, Average of best of first or third CIE and Second or fourth CIE is considered).
	• CIE will be conducted by the university as per scheduled time table with question papers for the
	subject (duration of 1 hour 30 minutes)
	Session wise assignments for 10 marks
	Activities 10 marks
	• Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)
	Semester End Examination (SEE)
	8. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
	<ol> <li>The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.</li> </ol>
	10. The question paper will have ten full questions carrying equal marks.
	11. Each full question carries 20 marks.
	12. There will be two full questions (with a maximum of four sub questions) from each module.
	13. Each full question will have sub questions covering all the topics under a module.
	14. The students will have to answer five full questions, selecting one full question from each module.

2024

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 2. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
- 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley
- 6. Engineering Chemistry I, D. Grour Krishana, Vikas Publishing
- 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th Edition, 2011.
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin & A.C. Arsenault, RSC Publishing, 2005.
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, Takatoshi Tsujimura, Wiley–Blackwell, 2012
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, Elzbieta Frackowiak, Wiley-VCH; 1st edition, 2013.
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda,
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022
- 18. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010
- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, NiraliPrakashan, 2020
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1st Edition, 2002.
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd Edition

201	4							d	<u>.</u>	_		
5. Prin 6 Che	ciples of	nanotec	hnology, neering	Phaniku Students	mar, Scit B S I	ech publ	ications,	2 ¹¹⁰ Edit Venugon	tion, 2010 al Sival	). cumaraiah	& Pushpa	Ivengar
Sub	ash Publ	ications	5th Editi	100 2014	D. D. J	ai i i akt	1311, IX.	venugop	ai, bivai	cumaranan	œ i usiipu	ryengar.
5u0 7 "En	gineering	o Chemi	stry" O	G Pala	nna Tata	McGra	w Hill I	Education	Pvt It	d New De	lhi Fourth	Reprint
201	5	5 chenn	suy, 0.	0. 1 แน	inia, rau			Laucation	I I VI. DI	a. new De	ini, i ourui	Reprint
8 Che	enistry of	f Engine	ering mat	erials M	alini S K	S Anan	tha Rain	CBS nu	blishers	Pvt Ltd	0	
9. Lab	oratory N	Manual F	Engg. Che	emistry, A	Anupma l	Rajput, I	Dhanpat l	Rai & Co		I tt Eta.,		
eb linl	ks and V	ideo Leo	ctures (e-	Resourc	es):	VG					STATE STATE	S
٠	http://li	bgen.rs/			X						20	<
٠	https://i	nptel.ac.i	in/downlo	oads/122	101001/							
٠	https://i	nptel.ac.i	in/courses	s/104/103	3/104103	019/						11
٠	https://i	ndl.iitkg	p.ac.in/	1								11
•	https://v	www.yoi	utube.con	n/watch?	v=faESC	xAWR9	<u>k</u>					
٠	https://v	www.you	utube.con	n/watch?	v=TBqX	MWaxZ	YM&list	=PLyhm	wFtznRh	uz8L1bb3X	<u>-</u> 7	
	9IbHrD	MjHWV	<u>Vh</u>		- 53			3.8				
٠	https://v	<u>www.yoi</u>	utube.con	n/watch?	v=j5Hml	6KN4T	<u>[</u>	*				
•	https://v	www.yoi	utube.con	n/watch?	v=X9GH	BdyYcy	<u>/0</u>					
٠	https://v	www.yo	utube.con	n/watch?	v=1xWB	PZnEJk	8					
•	https://	www.yoi	utube.con	n/watch?	v=wRAo	-M8xBI	IM	Ser 1	States and			
			(6	1 4 4				D 11		10	2	
cuvity	bttpo://	earning	(Suggesi	read area	ities in C	Jass)/ P	ractical	Based le	arning	20		
	https://	demonst	rations w	olfram co	m/topics	php		02830	ಸವೇ	3		
	https://j	interestir	genginee	ering com	/science	<u>pnp</u>						
	<u>Intep5.//1</u>		igonginee	ing.com	<u>, serence</u>		· KAC	HERA	NO 015	SCIPL		
			COs	and POs	Mappin	ng (Indiv	vidual tea	acher ha	s to fill u	ıp)		
	PO1	PO2	PO PO3	PO4	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO1
	2	1	1	104	105	100	1	100	10,	1010	TOIL	101
CO1	3		1				1021	1		SON	00/	6
CO1 CO2	3	1	1							and the second se		
CO1 CO2 CO3	3 3 3	1 1	1		3		1	~	V QU C			(
CO1 CO2 CO3 CO4	3 3 3 3	1 1 1	1 1 1	10	)	D	1 1	~~ 9	V QU QU		a	C



#### Syllabus

#### Semester:II

Course Title:	Engineering Chemistry for CES					
Course Code:	1	24CHEC202	CIE Marks 50			
Course Type	10	E Sal	SEE Marks	50		
Course Type	5	Theory	Total Marks	100		
Teaching Hours/Week (L/T)	3	3	ExamHours	03		
Total Hours of Pedagogy	13	40 hours	Credits	03		

Course objectives

- To enable students to acquire knowledge on principles of chemistry for engineeringapplications.
- To develop an intuitive understanding of chemistry by emphasizing the relatedbranches of engineering.
- To provide students with a solid foundation in analytical reasoning required to solvesocietal problems.

#### **Teaching-Learning Process**

#### Teaching-Learning Process

These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching–Learning more effective

- Flipped class
- Smart class room
- Blended mode of leaning
- Interactive simulations and animation
- Tutorial & remedial classes for needy students (not regular T/R)
- Conducting Makeup classes
- Demonstration of concepts either by building models or by industry visit
- Experiments in laboratories shall be executed in blended mode (conventional or non-conventional methods)
- Use of ICT Online videos, online courses
- Daily learning through assignments

# Sharnbasva University, Kalaburagi.

# CLARKER SHAP

Module-1: Structural Materials (8 hr)

Metals and Alloys: Introduction, Properties and application of Iron and its alloys,

**Cement:** Introduction, composition, properties, classification, manufacturing process of cement, process of setting and hardening of cement, additives for cement and testing of cement.

**Refractories:** Introduction, classification based on chemical composition, properties and application of refractory materials (clay bricks. silicon bricks, casting materials)

Glass: Introduction, Composition, Types, Preparation of Soda-lime glass, properties and applications of Soda-lime glass.

#### Module-2: Energy Conversion Systems and Corrosion (8 hr)

Energy conversion: Fuel Cells: Introduction, construction, working and applications of methanol-oxygen and polymer electrolyte membrane (PEM) fuel cell.

Storage devices: Introduction, construction and working of Li-ion battery.

1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

**Corrosion:** Introduction, electrochemical corrosion of steel in concrete, types (differential metal and aeration), Stress corrosion in civil structures, corrosion control (design and selection of materials, galvanization, anodization and sacrificial anode method).

Module-3: Nanotechnology and Water Technology (8 hr)

Nanotechnology: Introduction, size dependent properties of nanomaterial (surface area and catalytic), Synthesis of nanomaterial by sol-gel method and precipitation method.

Nanomaterials: Introduction, properties and engineering applications of carbon nanotubes, graphene and nanomaterials for water treatment (Metal oxide).

**Water technology:** Introduction, water parameters, hardness of water, determination of temporary, permanent and total hardness by EDTA method, numerical problems, softening of water by ion exchange method, desalination of water by reverse osmosis, determination of COD, numerical problems.

	Ν	<b>Aodule</b>	4:Polyme	er and C	Composites (	8 hr)	- 72	0		
<b>Polyme</b> polyme chlorid	er: Introduct ers, numerical e (PVC).	ion, typ l proble	be of poly ms. Synth	vmerizat esis, pro	ion with example of the second s	amples (Addit engineering ap	tion and	condensat	ion), molecular weigh thylene (PE) and polyw	ıt of vinyl
Fibers	and composi	ites: Sy	nthesis, pr	operties	and applicat	tions of Kevlar	and ny	on fibers.	1W	
Adhesi	ves: Introduc	tion, pr	operties ar	nd applie	cations of epo	oxy resin.	6		L'A	
Biodeg	radable poly	mers: S	Synthesis	of polyla	actic acid (PI	LA) and their a	pplicati	ons.	201	
	Ν	<b>Iodule</b>	5:Phase l	Rule and	d Analytical	Techniques (	<b>8 hr</b> )		2 NIC	
Phase	rule: Introdu	uction,	Definition	of term	ns: phase, co	omponents, de	gree of	freedom,	phase rule equation. P	hase
diagran	n: One compo	onent (v	vater syste	m) .					0	
Analyt	ical techniq	ues: In	troduction	, princi	ple, instrum	entation of p	otention	netric sense	ors; its application in	the
estimat	ion of iron,	Optical	sensors (	colorime	etry); its app	lication in the	e estima	tion of the	copper, pH-sensor (C	<b>Jlass</b>
electro	de); its applic	cation in	n the deter	rminatio	nof pH of be	verages.	6	Lair-	20	7
Course	e outcome (C	ourse S	skill Set)							Q .
At the e	end of the cou	irse the	student w	ill be ab	le to:			$( \cap )$	P	10
CO1.	Identify application	the s	terms	and	Processes	involved	in	scientific	and engineering	1
CO2.	Explain the	e pheno	mena of o	chemist	y to describ	e the methods	s of eng	ineeringpro	ocesses	
CO3.	Solve for the	ne probl	ems in che	emistry	hat are pertin	nent in enginee	ering ap	plications	IT I	11
CO4.	Apply the	basic co	oncepts of	chemis	try to explai	n the chemica	l propei	ties andpro	ocesses	1
CO5.	Analyze multidiscip	pro linary si	perties ituations	and	Processes	associated	with	chemical	substances in	
			The second		1000	UDORDO		ara A	PO 2000	7

2024

#### Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 50% of the maximum marks (25 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

#### **Continuous Internal Evaluation(CIE):**

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are:

The CIE marks for the theory component shall be 50 marks is as detailed below:

- Four tests each of 25 Marks; (Third and fourth tests are improvement tests, Average of best of first or third CIE and Second or fourth CIE is considered).
- CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 30 minutes)
- Session wise assignments for 10 marks
- Activities 10 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

#### Semester End Examination (SEE)

- 15. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- 16. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- 17. The question paper will have ten full questions carrying equal marks.
- 18. Each full question carries 20 marks.
- 19. There will be two full questions (with a maximum of four sub questions) from each module.
- 20. Each full question will have sub questions covering all the topics under a module.
- 21. The students will have to answer five full questions, selecting one full question from each module.

#### Suggested Learning Resources:

#### Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 2. Engineering Chemistry, Satyaprakash& Manisha Agrawal, Khanna Book Publishing, Delhi
- 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley
- 6. Engineering Chemistry I, D. GrourKrishana, Vikas Publishing

- 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12thEdition, 2011.
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin& A.C. Arsenault, RSCPublishing, 2005.
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, TakatoshiTsujimura, Wiley-Blackwell, 2012
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, ElzbietaFrackowiak, Wiley-VCH; 1st edition, 2013.
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda,
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022
- 18. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010
- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, NiraliPrakashan, 2020
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1st Edition, 2002.
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd Edition 2014
- 25. Principles of nanotechnology, Phanikumar, Scitech publications, 2nd Edition, 2010.
- 26. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah& Pushpa Iyengar., Subash Publications, 5th Edition, 2014
- 27. "Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint, 2015.

# Sharnbasva University, Kalaburagi.

28. Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd., Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co. Web links and Video Lectures (e-Resources): http://libgen.rs/ ٠ https://nptel.ac.in/downloads/122101001/ ٠ https://nptel.ac.in/courses/104/103/104103019/ . https://ndl.iitkgp.ac.in/ • https://www.youtube.com/watch?v=faESCxAWR9k . https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-. 9IbHrDMjHWWh https://www.youtube.com/watch?v=j5Hml6KN4TI ٠ https://www.youtube.com/watch?v=X9GHBdyYcyo • https://www.youtube.com/watch?v=1xWBPZnEJk8 . https://www.youtube.com/watch?v=wRAo-M8xBHM • Activity Based Learning (Suggested Activities in Class)/ Practical Based learning https://www.vlab.co.in/broad-area-chemical-sciences • https://demonstrations.wolfram.com/topics.php . https://interestingengineering.com/science ٠ COs and POs Mapping (Individual teacher has to fill up) PO PO10 **PO1 PO2** PO3 **PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12** CO1 3 CO2 1 CO3 3 1

**CO**4

CO5

3

1

1

1

1