SHARNBASVA UNIVERSITY, KALABURAGI

	TINITIAN AND AND AND		
	ADDITIONA	L MATHEMATICS -II	
	COMMON	TO ALL BRANCHES	
Course Code	21MATDIP41	CIE Marks	50
Contact Hours/Week	02	SEE Marks	00
Total Hours	25	Exam Hours	00
Semester	IV	Credits	00

Course Learning Objectives:

This course will enable students to:

- Solve first order differential equations..
- · Solve second and higher order differential equations.
- Understand and solve the partial differential equation.
- To acquire the knowledge of elementary probability theory.
- Know the basic concepts of evaluation of double and triple integrals.

Course Outcomes(COs):

After completion of course, the student will able to

Tirect com	netion of course, the student will able to		
CO#	Course Outcomes	POs	PSOs
CO1	Apply the knowledge of differential equation of first order to	1, 2, 3	
	solve examples based on Newton's law of cooling.		
CO2	Solve second and higher order differential equations occurring in of electrical circuits, damped/un-damped vibrations.	1, 2, 3	
	Explain the applications of Power series and obtain series		
	solution of ordinary differential equations.		
CO3	Construct a variety of partial differential equations and solution	1, 2, 3	
	by exact Methods / method of separation of variables.		
CO4	Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.	1, 2, 3	
CO5	Apply the knowledge of Probability to solve the simple real life problems	1, 2, 3	

Bloom's level of the course outcomes:

	Bloom's Level													
CO#	Remember (L1)	Understand (L2)	Apply (L3)	Analyze (L4)	Evaluate (L5)	Create (L6)								
CO1	1	V	1											
CO2	1	V	√											
CO3	1	1	√											
CO4	1	1	1											
CO5	V	1	1											

Course Articulation Matrix / Course mapping:

CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
CO1	3	2	2		1				1			1			
CO ₂	3	2	2		1				1			1			
CO3	3	2	2		1				1			1			
			4		T				1			1			

0

A /

Cashell Selson

SHARNBASVA UNIVERSITY, KALABURAGI

			SIL	YIVIA	JANUA.				1		
CO4	3	2	2		1		1		1		
CO5	3	2	2		1		1		1		

MODULE-1: DIFFERENTIAL EQUATIONS - 1

Differential Equation-1: Solution of first order and first degree differential equations: Variable separable, Homogeneous, Exact and Reducible to exact differential equation, Linear differential equation. Applications of first order first degree differential equations: Newton's law of cooling.

(RBT Levels: L1, L2 and L3) 5 Hours

Teaching - Learning Process

Chalk and talk method / Power Point Presentation

MODULE-2: DIFFERENTIAL EQUATIONS - 2

Differential Equations-2: Solution of second & higher order Ordinary linear differential equation with constant co-efficients. Method of variation of parameters. Solution of homogeneous LDE by Power series solution Method.

(RBT Levels: L1, L2 and L3)

5 Hours

Teaching - Learning Process

Chalk and talk method / Power Point Presentation

MODULE-3: PARTIAL DIFFERENTIAL EQUATIONS (PDE's)

Partial Differential Equations(PDE's): Formation of PDE by eliminating arbitrary constant & functions, Solution of Non-homogeneous PDE by direct integration, solution of homogeneous PDE with respect to one independent variable only. Derivation of one dimensional wave equation and heat equation and Various possible solution of wave & heat equations by methods of separation of variables.

(RBT Levels: L1, L2 and L3)

5 Hours

Teaching - Learning Process

Chalk and talk method / Power Point Presentation

MODULE-4: IMPROPER INTEGRALS

Improper Integrals: Beta and gamma functions and its properties and examples. Evaluation of double integral over a specific region, changing the order of integration, changing into polar form.

(RBT Levels: L1, L2 and L3)

5 Hours

Teaching - Learning Process

Chalk and talk method / Power Point Presentation

MODULE-5: PROBABILITY

Probability: Introduction, Sample space and Events. Axioms of Probability, Addition & Multiplication theorems. Conditional probability- illustrative examples. Baye's theorem- examples.

(RBT Levels: L1, L2 and L3)

5 Hours

Teaching - Learning Process

Chalk and talk method / Power Point Presentation

CIE + Assignments: 15+35=50 Marks

There will be a 2 CIE's, the best one among 2 CIE's will be considered and there will be a 35 marks

Not see the see

SHARNBASVA UNIVERSITY, KALABURAGI

for Assignments

Text Books:

1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.

2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed.(Reprint), 2016.

Reference books:

1. C.Ray Wylie, Louis C.Barrett: "Advanced Engineering Mathematics", 6th Edition,

2. McGraw-Hill Book Co., New York, 1995.

2. James Stewart: "Calculus -Early Transcendentals", Cengage Learning India Private Ltd., 2017.

3. B.V.Ramana: "Higher Engineering Mathematics" 11th Edition, Tata McGraw-Hill, 2010.

4. Srimanta Pal &Subobh C Bhunia: "Engineering Mathematics", Oxford University Press, 3rd Reprint, 2016.

5. Gupta C.B., Singh S.R. and Mukesh Kumar: "Engineering Mathematics for Semester I & II", Mc-Graw Hill Education (India) Pvt.Ltd., 2015.

Web links and Video Lectures:

1. http://nptel.ac.in/courses.php?disciplineID=111

2. http://www.class-central.com/subject/math

3. http://academicearth.org.

Edither Sub