			(Effective from the acader									
			Programme :B.Tech: Electronics and V SEMEST		ation Eng	gineering	5					
			V SENIES I	Teaching Department		aching rs/week	<u> </u>					
Sl. No.	0	Course Code	Course Title		Theory Lecture	Tutorial	Drawing	Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits
		1			L	Т	Р	D	0	S		
1	HSS	22HSM51	Management and Entrepreneurship Development	ECE	3			3	50	50	100	0.
2	PCC	22EC52	Digital Signal Processing	ECE	3	1		3	50	50	100	0
3	PCC	22EC53	Electromagnetic waves and Antennas	ECE	3			3	50	50	100	03
4	PEC	22EC54X	Professional Elective Course-I	ECE	3			3	50	50	100	03
5	OEC	22XX55X	Open Elective Course-I	ECE	4			3	50	50	100	04
6	PCC	22ECL56	Digital Signal Processing Laboratory	ECE			2	3	50	50	100	0
7	PCC	22ECL57	Electromagnetic waves and Antennas Laboratory	ECE			2	3	50	50	100	0
8	PEC	22ECL58X	Professional Elective Course-I Laboratory	ECE			2	3	50	50	100	0
9	PW	22PRJ59	Project-V	ECE			2	3	50	50	100	0
10	AEC	22AEC510X	Ability Enhancement Course-V	ECE		1	2	3	50	50	100	01
	1	l	16	1	10	30	500	500	1000	2		

	Pro	fessional Elective Course-I	
Course code under 22EC54X	Course Title	Coursecodeunder22ECL58X	Course Title
22EC541	Verilog HDL	22ECL581	Verilog HDL Laboratory
22EC542	Optical Fiber Communication	22ECL582	Optical Fiber Communication laboratory
	Ope	en Elective Course-I	
Course code under 22XX55X	Course Title		
22EC551	Internet of Things		
22EC552	Microcontroller and Microprocessor	ſ	
	Ability En	hancement Course-V	
Course code under 22AEC510X	Course Title		
22AEC510A	Research Article/Report Reading an	d Writing	
22AEC510B	C++ Basics		
AICTE Activity Points: In case	students fail to earn the prescribed act	ivity points, eighth semester Grade Card	d shall be issued only after earning the
Required activity points. Stude	ent shall be admitted for the award of th	ne degree only after the release of the Ei	ghth semester Grade Card.

		[Å a ı	Scheme of Teaching and per NEP, Outcome Based Education(OBE) ar			waton	~(CD (S) Saha	mal			
			(Effective from the aca			ysten	n(CBC	.5) Sche	mej			
			Programme: B.Tech: Electronics a			eering						
			VI SEMI	ESTER								
				nt		achin 1rs/we	0		Exami	ination		
No.	Course Code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits	
					L	Т	Р		C]	SF		
1	PCC	22EC61	VLSI Circuits	ECE	3			3	50	50	100	0
2	PCC	22EC62	Control system	ECE	2	1		3	50	50	100	0
3	PEC	22EC63X	Professional Elective Course-II	ECE	3			3	50	50	100	0
4	PEC	22EC64X	Professional Elective Course-III	ECE	3			3	50	50	100	0
5	OEC	22XX65X	Open Elective Course-II	ECE	4			3	50	50	100	0
6	PCC	22ECL66	VLSI Circuits Laboratory	ECE			2	3	50	50	100	0
7	PEC	22ECL67X	Professional Elective Course-II Laboratory	ECE			2	3	50	50	100	0
8	PEC	22ELC68X	Professional Elective Course-III Laboratory	ECE			2	3	50	50	100	0
9	PW	22PRJ69	Project-VI	ECE			2	3	50	50	100	0
10	HSS	22HSM610	Professional Ethics	ECE	1			3	50	50	100	0
11	AEC	22AEC611X	Ability Enhancement Course-VI	ECE			2	3	50	50	100	0
	1	-1	Total		16	1	10	33	550	550	1000	2

Project(PRJ): A batch of 4 to 5 students (Same branch or different branches) with a guide, may undertake one project (1 hour of theory/tutorial or two hours of practice /activities

	Professional Elective	e Course-II		
Course code under 22EC63X	Course Title	Course code	e under 22ECL67X	Course Title
22EC631	ARM Cortex M3 & Embedded Systems	22ECL671		Embedded Systems Laboratory
22EC632	Tiny Machine Learning	22ECL672		Machine Learning Laboratory
	Professional Elective	Course-III		•
Course code under 22EC64X	Course Title		Course code under 22ECL68X	Course Title
22EC641	Programming using Python		22ECL681	Programming using Python Laboratory
22EC642	IoT Technology		22ECL682	IoT Technology Laboratory
	Open Elective Course	e-II		
Course code under 22EC65X	Course Title			
22EC651	Embedded Systems			
22EC652	Introduction to UAV Electronics			
	Ability Enhancement	Course-VI		
Course code under 22AEC611X	Course Title			
22AEC611A	Antenna Design Simulation			
22AEC611B	Design of VLSI Circuits using LT spice			
2	ents fail to earn the prescribed activity points, E	0		• 0
Required activity points. Student sh	all be admitted for the award of the degree only	after the relea	ise of the Eighth set	mester Grade Card.

		URSHIP DEVELOPM		
[As per NEP, Outcome Based Ec	lucation, and Choice -SEMESTER	•	CBCS) Sch	eme]
Subject Code	22HSM51	V CIE Marks	50	
Number Lecture Hour/Week	3L	SEE Marks	50	
Number of Lecture Hours	40	Exam Hours	03	
Number of Lecture Hours			05	
 Course Objectives The objectives of the Understand basic skills of Managem Understand the need for Entreprener Identify the Management functions Distinguish between management and Understand Project identification and Management: Introduction-Meaning-N Functional areas of management- M Management & Administration-Rol Development of Management Thought- approaches. 	nent. urs and their skills. and Social responsibnd administration. d Selection. Module -1 Jature and character Janagement as art es of Managem	e students to: pilities. istics of management, S of science, art or pr ent, Levels of Mar	rofession- nagement,	Teaching Hours 08 Hours
Planning : Nature, Importance and put (meaning only)-decision making, Imp premise- Hierarchy of plans.	ortance of plannin	• • • •	-	
Organizing and Staffing: Organization	Module -2	stamistics Process of Or	aonizina	
Principles of Organizing, Span of Departmentalization, Committees–Me Decentralization of Authority and Resp Staffing- Need and Importance, Recruit Directing: Meaning and Requirements Nature of Motivation, Motivation Herzberg's Two Factor Theory); Comm Communication; Leadership-Meaning,	Management (m aning, Types of onsibility; ment and Selection of Effective Direc Theories (Maslow ³ munication – Mean	eaning and importanc Committees; Centraliz Process. tion, Giving Orders; M s Need-Hierarchy The ing, Importance and Pu	e only), ation Vs otivation- eory and rposes of	08 Hours
Communication, Leadership Wearing,	Module -3	avioral reproden of Lee	dersnip,	
Coordination: Coordination-Meaning, Controlling – Meaning, Need for C Effective Control System, Steps in Cont Authority delegation: Meaning, adva delegation, guidelines for effective dele Decentralization: Decentralization of au decentralization, the trade-off of central	Types, Techniques control System, Be trol Process. antage of effective gation. uthority meaning, d ization and decentra	nefits of Control, Esse delegation, barriers to istinction between deleg	effective	08 Hours
	Module -4			
Entrepreneurship: Definition of Entrepreneurship, Characteristics Entrepreneurs, Myths of Entrepreneurial development cycle.	of successful l	Entrepreneur, Classific	ation of	08 Hours

Modern Small Business Enterprises: Role of Small Scale Industries, Impact of	
Globalization and WTO on SSIs, Concepts and definitions of SSI Enterprises, Government	
policy and development of the Small Scale sector in India, Growth and Performance of	
Small Scale Industries in India, Sickness in SSI sector, Problems for Small Scale Industries,	
Ancillary Industry and Tiny Industry (Definition only).	
Module -5	
Projects Management: A Project. Search for a Business idea: Introduction, Choosing an	
Idea, Selection of product, The Adoption process, Product Innovation, Product Planning and	
Development Strategy, Product Planning and Development Process. Concepts of Projects	
and Classification: Introduction, Meaning of Projects, Characteristics of a Project, Project	08 Hours
Levels, Project Classification, Aspects of a Project, The project Cycle, Features and Phases	
of Project management, Project Management Processes. Project Identification: Feasibility	
Report, Project Feasibility Analysis. Project Formulation: Meaning, Steps in Project	
formulation, Sequential Stages of Project Formulation, Project Evaluation.	
Project Design and Network Analysis: Introduction, Importance of Network Analysis,	
Origin of PERT and CPM, Network, Network Techniques, Need for Network Techniques,	
Steps in PERT, CPM, Advantages, Limitations and Differences.	
Course Outcomes: After studying this course, students will be able to:	
CO1- Understand core principles of management and planning to effectively apply these conce	epts in
real-world scenarios.	-
CO2- Understand essential elements of Organizing, Staffing, and Directing and controlling, with	hich are
vital for effective management.	
CO3- Comprehend the key aspects of Social Responsibilities of Business and Entrepreneurshi	p, with a
focus on corporate governance and the entrepreneurial journey.	
CO4- Understand concepts, government policies, challenges, and entrepreneurial development	t.
CO5- Explain Project management concepts, network analysis techniques, and the formulation	n and
identification process for effective planning and execution.	
Text Books:	
1. Principles of Management – P.C Tripathi, P.N Reddy, McGraw Hill Education, 6th Ed	lition, 2017.
ISBN-13:978-93-5260-535-4.	
2. Entrepreneurship Development Small Business Enterprises- Poornima M Charantima	th, Pearson
Education 2008, ISBN 978-81-7758-260-4.	
3. Dynamics of Entrepreneurial Development and Management by Vasant Desai. HPH 2	2007, ISBN:
978-81-8488-801-2.	
4. Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A.	Shepherd,
"Entrepreneurship", 8th Edition, Tata Mc-graw Hill Publishing Co.ltdnew Delhi, 2012	
Reference Books:	
1. Essentials of Management: An International, Innovation and Leadership perspective	by Harold
Koontz, Heinz Weihrich McGraw Hill Education, 10th Edition 2016. ISBN- 978-93-392-2	286-4.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3): Note: 1-Low, 2-Medium, 3-High

	,			/	8										
СО/РО	P0.1	P0.2	PO.3	P0.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
C01	-	-	-	-	-	3	2	2	2	3	2	3	-	-	3
CO2	-	-	-	-	-	3	2	3	3	3	2	3	-	-	3
CO3	-	-	-	-	-	2	2	3	3	3	3	3	-	-	3
CO4	-	-	-	-	-	3	2	3	3	3	3	3	-	-	3
CO5	-	-	-	-	-	3	3	3	3	3	3	3	-	-	3

DIGIT	CAL SIGNAL PROC	ESING	
[As per NEP, Outcome Based Educ			CS) Scheme]
	SEMESTER-V	• ``	· _
Subject Code	22EC52	CIE Marks 5	50
Number of Lecture Hour/Week	4L	SEE Marks 5	50
Total Number of Lecture Hours	50	Exam Hours ()3
	CREDITS-04		
Course Objectives: This course will en			
 Understand the frequency domain s. Study the properties and the develop Learn the procedures to design of I bilinear transformation. Study the different windows used in on the specifications. 	oment of efficient algo IR filters from the and n the design of FIR fi	orithms for the computat alog filters using impuls lters and design appropr	ion of DFT. e invariance and
Realization of FIR and IIR filters in		orms.	
I	Module -1		Teaching Hours
Discrete Fourier Transforms (DFT) : of discrete time signals. DFT as a li transforms. Properties of DFT, multiplie (Text 1 & Ref 1)	near transformation,	its relationship with ot	
	Module -2		
Additional DFT properties, Application save and overlap-add method. Fast computation of DFT, need for efficient (Text 1 & Ref 1)	Fourier-Transform computation of the D	(FFT) algorithms: Dir	-
	Module -3		1
Radix-2 FFT algorithm for the computed decimation-in-frequency algorithms. Get (Text 2 & Ref 2)			10 Hours
• •	Module -4		
Structure for IIR Systems: Direct form, design: Characteristics of commonly u filters, analog to analog frequency tran filter using Butterworth filter: Impulse i (Text3& Ref 3)	used analog filter – E nsformations. Design nvariance, Bilinear tr	Butterworth and Chebys of IIR Filters from ana	hev
	Module -5		
FIR filter design: Magnitude and fr Hanning, Bartlett windows. Introduct window method, Structure for FIR S sampling structure, Lattice structure. (Text3& Ref 3)	ion to FIR filters, d	esign of FIR filters us	ing
Course Outcomes: After studying this CO1- Apply the discrete time Fourier tr CO2- Perform linear filtering on discret CO3- Apply the discrete in time and dis and Goertzel algorithms on discret efficiently. CO4- Design of infinite impulse respon	ansform algorithm an the time signals using contract of the screte in frequency fast the time signals to per	d its properties on discre liscrete time Fourier tran st Fourier transform, Chi form the discrete Fourier	sform. rp-Z transform,

CO5- Design of finite impulse response filters and develop FIR structures.

Text Books:

- 1. Digital signal processing Principles Algorithms & Applications, Proakis & Monalakis, Pearson education, 4th Edition, New Delhi, 2007.
- 2. Digital signal processing-Theory and Lab practice, D.Ganesh Rao, Vineeta P.Gejji, Second addition, PEARSON, 2010.

Reference Books:

- 1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.
- 2. Digital Signal2. Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.
- 3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.

СО/РО	P0.1	PO.2	PO.3	P0.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	2	-	-	-	2	-	-	-	-	-	3	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-

ELECTROMAGNETIC WAVES AND ANTENNAS

[As per C	Choice Based	Credit System	(CBCS) Scheme]
-----------	--------------	---------------	----------------

SEMESTER-V								
Subject Code	22EC53	CIE Marks	50					
Number Lecture Hour/Week	3L	SEE Marks	50					
Number of Lecture Hours	40	Exam Hours	03					
CREDITS-03								

Course Objectives: The objectives of the course is to enable students to:

- > Physical significance of Divergence, Curl and Gradient.
- Understand the applications of Coulomb's law and Gauss law to different charge distributions and the Laplace's and Poisson's Equations
- Know the physical interpretation of Maxwell's equations and applications for Plane waves for their behavior in free space, Dielectrics.
- > Introduce and discuss different types of Antennas, various terminologies, excitations.
- Study different types of Arrays, Pattern-multiplication, design antennas like Yagi-Uda, Helical antennas and other broad band antennas.

Module -1	Teaching Hours
Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Electric flux density. Gauss law, Divergence. Maxwell's First equation (Electrostatics), Vector Operator and divergence theorem. (2.1,2.2,2.4,3.1,3.2,3.5,3.6,3.7 of Text 1)	08 Hours
Module -2	
The line integral, Definition of potential difference & potential, The potential field of point charge, Potential Gradient, Current and Current density, Continuity of current, Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem (4.2,4.3,4.4,4.6,5.1,5.2,7.1,7.2,8.1,8.2,8.3,8.4 of Text 1)	08 Hours
Module -3	
Magnetic flux and magnetic flux density, Scalar and Vector Magnetic Potentials. Farday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form. Wave propagation in free space, Dielectrics, Poynting's Theorem and wave power(8.5,8.6,10.1,10.2,10.3,10.4,12.1,12.2,12.3of Text1)	08 Hours
Module -4	
Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Bandwidth, Radio Communication Link, Antenna Field Zones & Polarization. Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing. (2.1-2.11,2.13,2.15,5.1-5.10,5.13 of Text 2)	08 Hours
Module -5	
Antenna Types: Helical Antenna, Yagi-Uda antenna, corner reflectors, parabolic reflectors, log periodic antenna, lens antenna, antenna for special applications – sleeve antenna, turnstile antenna, omni directional antennas, antennas for satellite, antennas for ground penetrating radars, embedded antennas, ultra wide band antennas, plasma antenna. Patch or Microstrip Antennas (8.1-8.3,9.3,9.9,10.115.6,15.7,15.9,15.26-15.29,16-12 of Text 2)	08 Hours

Course Outcomes: After studying this course, students will be able to:

- CO1- Explain and analyze electric field due to point, linear, and volume charges by applying Conventional method or Gauss law.
- CO2- Analyze the potential energy of a point charge through Laplace's equation and examine laws linking magnetic fields to electric current.
- CO3- Apply Maxwell's equations for time-varying electromagnetic fields and EM wave propagation in free space, then use Poynting's theorem to calculate wave power and energy.
- CO4- Analyze the fundamentals of antenna theory.

CO5- Understand and analyze the functionality and applications of different antennas.

Text Books:

- 1. W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Edition, TataMcGraw-Hill, 2009, ISBN-978-0-07-061223-5.
- 2. D. Krauss, "Antennas and Wave Propagation", McGraw Hill TMH, 4th Edition, 2010.

Reference Books:

- 1. C. A. Balanis, "Antenna Theory Analysis and Design", John Wiley, 2nd Edition 2007.
- 2. A.R.Harish, M.Sachidanada, "Antennas and propagation", Pearson Education, 2015.

СО/РО	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	9.0Y	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-

VI	ERILOG HDL		
As per NEP, Outcome Based Education (C	,	used Credit System (CBC	CS) Scheme
	EMESTER-V		50
Course Code	22EC541	CIE Marks	50
Number of Lecture Hours/Week	3L	SEE Marks	50
Total Number of Lecture Hours	40	Exam Hours	03hrs
CR	EDITS-03		
 Course Learning Objectives: Learn different Verilog HDL construct Understand the basic concepts and inte Understand different aspects of gate le Understand behavioral statements, Ve Understand the concept of logic synth 	rnals of module. evel design and con prilog Tasks, Funct	ions and Directives.	
	odule 1		Teaching
Overview of Digital Design with		Evolution of CAD	Hours
emergence of HDLs, typical HDL-flow, Hierarchical Modeling Concepts: methodology, differences between mod simulation, design block, stimulus block	why Verilog HDL Top-down and dules and module	?, trends in HDLs. bottom-up design instances, parts of a	08 Hours
	odule 2		
Basic Concepts: Lexical conventions directives. Modules and Ports: Module definiti	on, port declarati	-	08 Hours
hierarchical name referencing. (Text1: C	(H. 3, 4) odule 3		
Gate-Level Modeling: Modeling using		primitives description	
of and/or and buf/not type gates, rise, typical delays, Examples. Dataflow Modeling: Continuous assign operators, operands, operator types. (Tex	fall and turn-off on ments, delay spe	delays, min, max, and cification, expressions,	
Behavioral Modeling: Structured prod	cedures, initial an	d always, blocking	
and non-blocking statements, regular control, conditional statements, Multiv Examples.	•	0	08 Hours
Tasks and functions: differences bett functions with examples. (Text1: CH. 8.3.2)			
	odule 5		
Switch level modeling : switch modeling switches, bidirectional switches, power switches, examples.	0		08 Hours
Logic Synthesis with Verilog: Logic Verilog HDL synthesis, Synthesis der netlist. (Text1: CH. 11, 14.1, 14.2, 14.3,	sign flow, verific	•	

Course Outcomes: At the end of this course, students should be able to

- CO1- Emphasize the importance of Verilog HDL, design methodology, and abstraction levels in relation to a particular digital design.
- CO2- Grasp the fundamental concepts, components, and internal structure of Verilog HDL.
- CO3- Analyze and design circuits at gate level and data flow level by applying the basic knowledge of delay and operators.
- CO4- Design and explain a behavioral circuit using structured procedures and conditional statements.
- CO5- Develop fundamental switch-level circuits and analyze the various constructs used in logic synthesis.

Text Book:

1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition.

Reference Books:

- 1. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science+Business Media, LLC, Fifth edition.
- 2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL" Pearson (Prentice Hall), Second edition.
- 3. Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley, 2016 or earlier.

CO/PO	P0.1	PO.2	PO.3	PO.4	PO.5	PO.6	PO.7	PO.8	PO.9	PO.10	PO.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	2	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-

OPTICAL FIBER COMMUNICATION

[As per NEP, Outcome based Education (O	BE), and Choice Base	d Credit System CBCS)	Scheme]									
SEMESTER-V Subject Code 22EC542 CIE Marks 50												
Subject Code	22EC542	50										
Number of Lecture Hour/Week	3L	SEE Marks	50									
Total Number of Lecture Hours	40	Exam Hours	03									

CREDITS-03

Course Objectives : This course will enable students to:

- Learn the basic principle of optical fiber communication with different modes of light propagation.
- > Understand the transmission characteristics and losses in optical fiber.
- > Study of optical components and its applications in optical communication networks.
- Learn the network standards in optical fiber and understand the network architectures along with its functionalities.

Modules	Teaching Hours
Module-1	
Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber wave guides :Ray theory transmission, Modes in planar guide, Phase and group velocity, Cylindrical fiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effective refractive index. Fiber Materials, Photonic crystal fibers. Text book 2: Chapter 1 and 2	
Module-2	
Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices: Fusion Splices, Mechanical splices, Fiber connector, Cylindrical ferrule connectors, Duplex and Multiple fiber connectors. Fiber couplers: three and four port couplers, star couplers, Optical Isolators and Circulators. Text book 2: Chapter 3 and 5	
Module-3	
 Optical sources: Light Emitting diodes: LED Structures, Light Source Materials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant Frequencies. Photo-detectors: Physical principles of Photodiodes, Photo detector noise, Detector response time. Optical Receiver: Optical Receiver Operation: Error Sources, Front End Amplifiers. Text book 1: Chapter 4:4.2,4.3, Chapter 6:6.1,6.2,6.3, Chapter 7:7.1 	
	00 II anna
 WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards. Optical amplifiers: Basic application and Types, Semiconductor optical amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. Text book 1: Chapter 10:10.1,10.8, Chapter 11:11.1,11.2,11.3 	08 Hours

Module-5										
OPTICAL AMPLIFIERS AND NETWORKS : optical amplifiers, basic applications and types, semiconductor optical amplifiers, EDFA. Optical Networks: Introduction, SONET / SDH, Optical Interfaces, SONET/SDH rings, High – speed light – waveguides. Text book 1: Chapter 13:13.1,13.2,13.3.	08 Hours									
Course outcomes: After studying this course, students will be able to:	•									
 CO1-Comprahend the construction and working principle of optical connectors, mult amplifiers, Optical sources, and detectors. CO2-Analyze the Applications of Semiconductor optical amplifiers, Erbium Doped Fit Raman Amplifiers, and Wide band Optical Amplifiers. CO3-Analyze the various transmission losses in the optical fiber. CO4-Analyzethenetworkingaspectsofopticalfiberanddescribevariousstandardsassociat CO5-Design and interface issues of SONET/SDH optical networks. 	per Amplifiers,									
Text Books:										
 Gerd Keiser, Optical Fiber Communication, 4thEdition, Mc Graw Hill Educatio Private Limited, 2015. ISBN:1-25-900687-5. John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edi Education, 2010, ISBN:978-81-317-3266-3. 										

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):

		L 0,	1	curun	, -					1	1			1	
СО/РО	P0.1	PO.2	P0.3	PO.4	P0.5	PO.6	PO.7	PO.8	PO.9	PO.10	PO.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	2	3	-	-	-	-	-	-	-	-	-	3	-	-

Note: 1-Low, 2-Medium, 3-High

	INTERNET OI	F THINGS		
[As per Choic	e Based Credit SEMESTE	System (CBCS) Scheme] R-V		
Subject Code	22EC551	CIE Marks	50	
Number Lecture Hour/Week	4L	SEE Marks	50	
Number of Lecture Hours	50	Exam Hours	03	
	CREDITS	-04		
Course Objectives: This course will e	enable students to):		
> Understand the overview of IoT, P				
> Studying the similarity between M	• •			
Understand IoT platform design m	ethodology.			
Know the IoT physical devices and	l Python program	nming concept.		
Understand the role of IoT in vario	ous domains of a	oplications.		
	Module -1			Teaching
				Hours
Introduction to Internet of Things				
Introduction: Definition, and Characteris				
Physical Design of IoT: Things in IoT, Io Logical Design of IoT: IoT Funct		oT Communication Mode	la IaT	
communication APIs	Ional Diocks, I	of Communication wrote	318, 101	10 Hours
IoT Enabling Technologies: Wireless	s sensor networ	ks Cloud computing B	io data	
analytics, communication protocol, En		1 0	ng uutu	
IoT levels and Deployment Templates:	•			
	Module -2			
IoT and M2M: M2M, Difference betw		2M. Software defined net	working	
and network function virtualization				
IoT System Management with	NETCONF-YA	ANG: Need for IoT	System	10 Hours
Management, SNMP, Network operat				
Management with NETCONF-YANG	. (Chapter 3 &	4)	·	
	Module -3			
IoT Platforms Design Methodology:	Introduction, Id	T Design Methodology,	Purpose	
and Requirements Specification, Pro-	cess Specification	on, Domain model Specif	fication,	
Information Model specification, se	ervice specifica	tions, IoT level Specifi	cations,	10 Hours
Functional view specifications, operat	ional view speci	fications, Device and con	nponent	
Integration, Application Development,	Motivation for	Using Python(chapter-5)		
	Module -4			
IoT Systems- Logical Design using	Python: Introd	uction, Installing Python,	Python	
Data Types and Data Structures, Co	ntrol Flow, Fur	ctions, Modules, Packag	es, File	
handling, Python Packages.				
IoT Physical Devices & Endpoints:				
Exemplary Device: Raspberry Pi, Abe	out the Board, L	inux on Raspberry Pi, Ra	spberry	10 Hours
Pi Interfaces. Programming Rasph	perry Pi with	Python, Arduino, Abo	out the	
board.(Chapter 6&7)				
	Module -5			
Domain Specific IoTs and its Appl			conment	
Energy, Retail, logistics, Agriculture, 1	•	•		10 Hours
IoT applications: Smart lighting, s			em, air	
pollution monitoring, forest fire detect	ion, smart irrigat	tion. (Chapter-2 & 9)		

Course Outcomes: After studying this course, students will be able to:

CO1-Define and illustrate architectural view of IoT and analyze all the six levels of IoT deployment templets.

CO2-Compare M2M & IOT and applications of NETCONF-YANG in IoT system management.

CO3-Analyse various IoT design methodology specifications.

CO4-Logical and physical design of IoT system using Python and Respberry Pi.

CO5-Design IoT system for Home automation, cities, energy, environment, retail, logistic,

agriculture, industry, health and life style.

Text Books:

1. Arshdeep Bhaga and Vijay Madisetti, "Internet of Things – A Hands-on Approach 2014

Reference Book:

- 3. Raj Kamal, "Internet of Things- Architecture and Design Principles", McGraw Hill Education.
- 4. Qusay F. Hassan, Internet of Things A to Z Technologies and Applications, IEEE press, WILEY, ISBN:978-1-111-945674-2.

CO/PO	P0.1	PO.2	PO.3	PO.4	PO.5	PO.6	PO.7	PO.8	9.0Y	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-

MICROCONTROLLER AND MICROPROCESSOR

MICROCONTRO	OLLER AND MICR	OPROCESSOR	
[As per NEP, Outcome Based Educati		Based Credit System (C	CBCS) Scheme]
	SEMESTER-V		70
Subject Code Number of Lecture Hours/Week	22EC552		50 50
Total Number of Lecture Hours	4L 40		03
Total Number of Lecture Hours	CREDITS-04		03
Course objectives: Students will be			
 Understand the basics of mi 8051microcontrollers. 	0	ded systems and a	rchitecture of
Explain and analyze the instru Assembly Level Programs using	g8051 Instruction set		
 Understand and write peripheral pr 			•
Analyze the Application and Int	0		
\succ To develop an Understand th	ne basics of micropro	cessors. Architecture c	of 8086
microprocessors.	1	£ 000 <i>C</i>	
Analyze and write the Assembly	anguage programs c	01 8080	
]	Module -1		Teaching Hours
8051 Microcontroller: Microprocess Embedded Microcontrollers, 8051 A functions, Internal Memory organizatio	rchitecture- Register	s, Pin diagram, I/O po	orts 08 Hours
	Module -2		
8051 Instruction Set: Addressing M instructions, Logical instructions, Bra Simple Assembly language program ex	nch instructions, Bit	manipulation instruction	ons. 08 Hours
	Module -3	,	
8051 Interrupts and Interfacing Applica programming to generate an external in generate a square waveform on a port ADC-0804, DAC, LCD and Steppe interfacing programming	nterrupt using a switc pin using a Timer in	h, 8051 C programming terrupt. Interfacing 8051	g to to 08 Hours
	Module -4		I
8086 Architecture: 8086 Architecture: 8086 Architecture: Memory Segmentation, Programming Organization, Architecture of 8086, Si	g Model, Memory ac	ldresses, Physical Mem	
I	Module -5		
Instruction Set and Assembly Languag Addressing modes, Instruction Set, Asser involving Logical, Branch and Call Instru	mbler Directives, Macr	os, and Simple Programs	08 Hours
Course outcomes: At the end of the co CO1-Understand and analyze basics of CO2- Develop 8051 application speci CO3-Analyze the interfacing of 8051 CO4- Apply the 8086 instruction set CO5- Investigate the performance of IV to i7 and submit a report.	urse, students will be of microcontroller an fic programs using 8 microcontroller to va to write the program	able to: d microprocessor. 3051 instructions set. arious I/O devices. as.	um-

Text Books:

- 1. "The 8051 Microcontroller and Embedded Systems using Assembly and C", Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; PHI, 2006 / Pearson, 2006.
- 2. "The 8051 Microcontroller", Kenneth. J Ayala,3rd Edition, Thomson /Cengage Learning.
- 3. Advanced Microprocessors and Peripherals A. K. Ray and K.M. Bhurchandani, MHE, 2nd Edition 2006.

Reference Book:

- 1. "The 8051 Microcontroller Based Embedded Systems", Manish K Patel, McGraw Hill, 2014, ISBN:978-93-329-0125-4.
- 2. "Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, Pearson Education,2005.
- 3. Microprocessors and Interfacing, D. V. Hall, MGH, 2nd Edition 2006.

CO/PO															
	0.1	.2	.3	4.0	.5	9.6	5.7	.8	6.0	.10	.11	.12	D.1	0.2	0.3
	PO	PO	PO	PO	PO	PO	PO	PO	PO.9	PO.10	PO	PO	PSO	PSO	PSO.
													, ,	, ,	, ,
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO3	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-

DIGITAL SIGNAL PROCESING LABORATORY [As per NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Scheme] SEMESTER-V Subject Code 22ECL56 CIE Marks 50 Number of Lecture Hour/Week 2P SEE Marks 50 Total Number of Hours 24 Exam Hours 03

CREDITS-01

Course Objectives: This course will enable students to:

- > Simulate discrete time signals and verification of sampling theorem.
- > Compute the DFT for a discrete signal and verification of its properties using SCILAB.
- Find solution to the difference equations and computation of convolution and correlation along with the verification of properties.
- > Compute and display the filtering operations and compare with the theoretical values.
- > Implement the DSP computations on DSP hardware and verify the result.

List of Experiments:

Following Experiments to be done using MATLAB / SCILAB / OCTAVE or equivalent:

- 1. Specifications (using different window techniques). Verification of sampling theorem.
- 2. Linear and circular convolution of two given sequences, Commutative, distributive and associative property of convolution.
- 3. Auto and cross correlation of two sequences and verification of their properties.
- 4. Solving a given difference equation.
- 5. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum (using DFT equation and verify it by built-in routine, Study the frequency resolution with different values of N).
- 6.
- (i) Verification of DFT properties (like Linearity and Parseval's theorem, etc.)
- (ii) DFT computations of square pulse and sinc function etc.
- 7. Design and implementation of FIR filter to meet given.
- 8. Design and implementation of IIR filter to meet given specifications.

Following Experiments to be done using DSP kit

- 1.Linear convolution of two sequences
- 2. Circular convolution of two sequences
- 3.N-point DFT of a given sequence

4.Impulse response of first order and second order system

5.Implementation of FIR filter

Course Outcomes: After studying this course, the students will be able to:

- CO1- Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment.
- CO2-Utilize laboratory instruments/simulation tools to build and test experiments.
- CO3- Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.
- CO4- Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs.

CO5- Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING(1/2/3): Note:1-Low, 2-Medium, 3-High

CO/PO	P0.1	P0.2	P0.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

ELECTROMAGNETIC WAVES AND ANTENNAS LABORATORY

[As per NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Scheme]

	SEMESTER-V		
Subject Code	22ECL57	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Total Number of Hours	24	Exam Hours	03
	CREDITS-01		
Course Objectives: This course will ena	ble students to		
Radiation pattern of antennas.			
Determining gain and directivity of a	given antenna.		
Working of Klystron source.			
Study of directional coupler, Microst	rip ring resonator.		
List of Experiments:			
1. Measurement of frequency, guid	0 1	SWR and attenuation i	n microwave test bencl
2. Measurement of directivity of m	1 1		
3. Measurement of gain of microst			
4. Measurement of directivity of Y	agi antennas.		
5. Measurement of gain of Yagi an			
6. Measurement of directivity of he	orn antennas		
7. Measurement of gain of horn an	tennas.		
8. Impedance measurements of Ho	rn/Yagi/dipole/Paraboli	c antennas	
9. Determination of Coupling and	solation characteristics	of microstrip directiona	al coupler.
10. Resonance characteristics of mic		*	*
substrate.	r 8	r	
11. Power division and isolation of	microstrin nower divide	r	
12. Measurement of cross and co-po	11		
Course Outcomes: After studying this c			
CO1- Develop a strong foundation in app	·		ating the experiment.
CO2- Utilize laboratory instruments/sim			0 P
CO3-Analyse experimental data/simulati			ngful conclusions.
CO4-Learn to work effectively in teams			
CO5- Manage time effectively in a simul		6	1 0

collection, and report writing within specified deadlines.

toteri Low, 2 meutum, 5 mgh															
CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	PO.7	PO.8	9.0Y	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

[As per NEP, Outcome Based Education (O	IDL LABORATORY BE) and Choice Based (MESTER-V		neme]
Laboratory Code	22ECL581	CIE Marks	50
Number of Lecture Hours/Week	2P	SEE Marks	50
Total Number of Lecture Hours	24	Exam Hours	03
	CREDITS – 01		
 Course Learning Objectives: This course Familiarize with the CAD tool to write Understand simulation and synthesis o Program FPGAs/CPLDs to synthesize 	HDL programs. f digital design.	o:	

- > Interface hardware to programmable ICs through I/O ports.
- ▶ Use Verilog for a given Abstraction level.

Note: Programming can be done using any compiler. Download the programs on a FPGA/CPLD board and performance testing may be done using 32 channel pattern generator and logic analyzer apart from verification by simulation with tools such as Altera/ Modelsim or equivalent.

Laboratory Experiments

Part-A: PROGRAMMING

- 1. Write Verilog code to realize all the logic gates.
- 2. Write a Verilog program for the following combinational designs
 - a. 2 to 4 decoder
 - b. 8 to 3 (encoder without priority & with priority)
 - c. Multiplexer, de-multiplexer.
- 3. Write a Verilog code to describe the functions of a Full Adder using three modeling styles.
- 4. Develop the Verilog code for 4 bit ripple carry adder.
- 5. Develop the Verilog code for 4 bit parallel multiplier.
- 6. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
- 7. Design a 4 bit binary counters (Synchronous reset and Asynchronous reset).
- 8. Design 4 bit ALU and write a Verilog Code.
- 9. Write Verilog HDL code to control speed, direction of DC and Stepper motor.
- 10. Write Verilog HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency.

Course Outcomes: After studying this course, the students will be able to:

CO1- Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment.

CO2- Utilize laboratory instruments/simulation tools to build and test experiments.

- CO3- Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.
- CO4-Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs.

CO5- Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

CO/PO	P0.1	PO.2	P0.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

OPTICAL FIBER COMMUNICATION LABORATORY

[As per NEP, Outcome Based Educatio			
Subject Code	22ECL582	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Total Number of Lecture Hours	24	Exam Hours	03
	CREDITS-0	1	
Course Objectives: This course will enab			
Performance comparison of optical lin	-	=	
Performance Evaluation of Point to point	oint optical link a	t different distances and	for different
transmitter powers.			
Performance comparison of optical lin		for different fibers.	
Impact of optical amplifiers on link period	erformance.		
<u>Experiments</u>			
1. To study the VI & PI characterist	tics of the FO-Ll	ED.	
2. To study the VI & PI characterist	tics of the Laser	Diode.	
3. Real time Temperature sensor da	ta transfer using	fiber optic	
4. To study the transfer Characteris	tics between the	DETECTOR and SOUR	CE with
simplex cable.			
5. To study the VOICE communica	tion over the fib	er optic cable.	
6. To study Voice communication u	using CODEC.		
7. To study PWM signal communic	ation using fiber	optic.	
8. To study digital data transmission	n with LED and	switch.	
9. To set up Fiber Optic Analog and	d fiber Optic Dig	ital link.	
10. Measurement of Propagation loss	s and numerical	aperture.	
11. Measurement of optical power be	ending loss in a p	plastic optical fiber.	
12. Study and measure characteristics o			
Course Outcomes: After studying this cou			
CO1-Develop a strong foundation in apply	ing theoretical co	oncepts by designing /sin	ulating the
experiment.	tion tools to buil	d and tast appariments	
CO2-Utilize laboratory instruments/simula CO3- Analyse experimental data/simulation		1	eaningful conclusions
CO4-Learn to work effectively in teams wh			-
circuits/programs.	<i>, , , , , , , , , ,</i>	6	
CO5- Manage time effectively in a simulat	ion/laboratory en	vironment, balancing ex	perimental work, data
collection, and report writing within	specified deadlin	nes.	
Reference Books:	22	IIIII.	
1.GerdKeiser, "OpticalFiberCommunic 2010.	cation WcGraw-	-Hillinternational,4 Editi	on
2010.			

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING(1/2/3): Note: 1-Low, 2-Medium, 3-High

СО/РО	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	PO.7	PO.8	PO.9	PO.10	PO.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

	SEMESTER-V		
Subject Code	22PRJ59	CIE Marks	50
Number Lecture Hour/Week	2P	SEE Marks	50
Total Number of Lecture Hours	24	Exam Hours	03
	CREDITS-01		
Course Objectives: Students will be t	aught to:		
Get exposure about the electronics	hardware and vario	us software tools.	
> Design the working model of the o	open ended problem.		
Understand concepts of Packaging	 5.		
Understand the latest technology t	rends in the PCB des	sign.	
Prepare technical documentation	of the project.	-	
STUDENTS WILL BE GIVEN A O	PEN ENDED PRO	BLEM OF THE SO	CIETY AND ASKED
TO SOLVE BY DESIGNING AND	IMPLEMENTING T	THE SYSTEM IN TE	CAM.
Course outcomes: After studying this	s course, students wi	ll be able to:	
CO1- Apply the knowledge of electro			to solve the real time
problems of the society.		Ĩ	
CO2- Analyze the various existing so	lutions available to s	solve the real time pro-	oblem and propose the
best solution.		1	1 1
CO3- Design and implement the syste	m to solve the real ti	ime problem of the so	ociety.
CO4-Conduct investigations on the o system in a team.		-	-
CO5- Use the modern tool available li	ke advanced hardwa	re and software tools	

СО/РО	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	PO.7	PO.8	PO.9	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	2	2	-	-	3	3	-	3	-	3	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	-	3	-
CO3	3	3	3	2	3	2	2	-	3	3	2	3	-	3	-
CO4	3	3	3	2	-	-	-	3	3	3	3	3	-	3	-
CO5	-	-	-	-	3	-	-	3	3	3	3	3	-	3	-

RESEARCH ARTICLE/REPORT READING AND WRITING

[As per NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Scheme] SEMESTER-V

Subject Code	22AEC510A	CIE Marks	50
Number Lecture Hour/Week	2P	SEE Marks	50
Total Number of Lecture Hours	24	Exam Hours	03

CREDITS-01

Course Objectives: Students will be taught to:

- > Download the research articles from the digital platforms and read it.
- > Understand the various sections of the research article.
- ➢ How to review the literature?
- ➢ How to formulate the research problem statement?
- > How to design the methodology, represent the result, write the research article and publish it.

EVERY WEEK STUDENTS WILL BE GIVEN ONE RESEARCH ARTICLE AND MAKE THEM TO READ UNDERSTAND AND ANALYZE IT.

Course outcomes: After studying this course, students will be able to:

CO1-Independently down load the research articles of their interested domain and read it.

CO2-Analize the various sections of the research paper and present it using power point/chart.

CO3- Do the proper literature survey and submit the report individual/ group.

CO4-Design various sections of the research paper like introduction, literature review, methodology, result and conclusions.

CO5- Write the research article and publish in indexed journals/ submit report.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):

Note: 1-Low, 2-Medium, 3-High

CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	9.0Y	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

[As per NEP, Outcome based Educa	C++ BASICS attion (OBE), and Choice	e Based Credit Syster	m (CBCS) Scheme]
	SEMESTER-V	·	· · · -
Course Code	22AECL510B	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Number of Lecture Hours	24	Exam hours	03
	CREDITS-01		
Course Objectives: Students will be			
 Introduces object-oriented progra 	0 1 0	000	
Introduces the principles of data a	,	1 2 1	
Introduces the principles of virtu	1 0	orphism	
Introduces handling formatted I/C) and unformatted I/O		
Introduces exception handling	N/ 1 1 1		
1 White a Child Data start to display	Module -1		
1. Write a C++ Program to display			who have appeared
in the examination. Declare the cl an array of class objects. Read and		6	
2. Write a C++ program to declare St		-	or
variables.	ruct. Initialize and dispi	ay contents of memo	
3. Write a C++ program to declare a o	class. Declare pointer to	class Initialize and	
display the contents of the class me	1	clubb. Initianze and	
4. Given that an EMPLOYEE class of		bers: data members:	
Employee number, Employee nam	0		
members.	, , , , ,	, I	
5. Write a C++ program to read the d	ata of N employee and o	compute Net salary of	f each
employee (DA=52% of Basic and	Income Tax (IT) =30%	of the gross salary).	
6. Write a C++ to illustrate the conce			
7. Write a C++ program to use scope		splay the various valu	es of
the same variables declared at diff	-		
8. Write a C++ program to allocate m			
9. Write a C++ program to create mu			,
10. Write a C++ program to create an objects.	array of pointers. Invol	ke functions using arr	ay
11. Write a C++ program to use point	ter for both base and der	rived classes and call	the
member function. Use Virtual ke			
Course Outcomes: After studying th	v	vill be able to:	
CO1-Develop a strong foundation in			simulating the
experiment.			C
CO2- Utilize laboratory instruments/s	simulation tools to build	and test experiments	5.
CO3-Analyse experimental data/simu	ulation results and interp	pret findings to draw i	meaningful
conclusions.			
CO4-Learn to work effectively in tea	ms while identifying an	d correcting faults in	electronic
circuits/programs.			
CO5-Manage time effectively in a sin	-		experimental work,
1 1 1 1 1 1 1 1 1	ng within specified dead	lines	

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3): Note: 1-Low, 2-Medium, 3-High

CO/PO	P0.1	P0.2	PO.3	P0.4	P0.5	PO.6	P0.7	PO.8	PO.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	•	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

	VLSI CIRCUITS						
[As per NEP, Outcome Based Edu		sed Credit System (CBC	S) Scheme]				
	SEMESTER-VI		0				
Subject Code22EC61CIE Marks50Number of Lecture Hour/Week3LSEE Marks50							
Number of Lecture Hour/Week	3L						
Total Number of Lecture Hours	40 CREDITS-03	Exam Hours 0	3				
Course Objectives: The objectives of		students to:					
 Impart knowledge of MOS transistor 							
 Impart knowledge of web transition Impart knowledge on architectura 			ed indesigning				
and realizing the circuits in CMOS	-						
Cultivate the concepts of Memory a		processes.					
Exemplify single-stage amplifiers		L					
 Describe Differential amplifier and 	Current Mirrors.						
	Module -1		Teaching				
			Hours				
Introduction: MOS transistors, MOS							
Ideal I-V Effects, DC Transfer Characte		rocess. (Text 1)	08 Hours				
]	Module -2						
MOS and BiCMOS Circuit Design P		Stick Diagrams, Design					
Rules and Layout, VLSI Design Flow.			g 08 Hours				
Sheet Resistance, Area Capacitance of Layers, Standard Unit of Capacitance, Scaling							
Models and Scaling factors, Scaling Fa		meters. (Text 3)					
	Module -3						
Memory: SRAM, DRAM, read only m	emory, Serial Access	Memory, programmable					
Logic array. (Text 1)			08 Hours				
Subsystem Design: Some architectura Logic, C ² MOS logic, CMOS Domino		S logic, Dynamic CMOS					
Logic, C MOS logic, CMOS Domino	Module -4						
Single Stage Amplifier: Common Sou		lower Common gate					
Stage, Cascode Stage. (Text 2)	ice Blage, Boulee I of	iower,common gate	08 Hours				
Module -5							
Differential amplifiers: Single Ended		1	ial				
pair, Common Mode Response, Differe			00 11				
Passive and Active Current Mirrors	: Basic Current Mirro	r, Cascode Current Mirr	or, 08 Hours				
Active Current Mirror. (Text 2)							
Course outcomes: At the end of the co	urse the students will	he able to:					
CO1-Analyze the ideal and non-ideal I-V							
			sic circuits				
•	morproi gaio ravouis a						
CO2- Develop the ability to create and in		-	he impact of				
CO2- Develop the ability to create and in while adhering to design rules, and device miniaturization.		-	he impact of				
202- Develop the ability to create and in while adhering to design rules, and device miniaturization.	d analyze and apply sc	aling models to predict t	-				
CO2- Develop the ability to create and in while adhering to design rules, and	d analyze and apply sc for various application	aling models to predict t s based on system requir	ements.				

Text Books:

- 1. "CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, Pearson Education.
- 2. "Design Of Analog CMOS Integrated Circuits"-Behzad Razavi, McGraw Hill Education (India) Edition 2002
- "Basic VLSI Design ", Douglass A. Pucknell & Kamran Eshraghian, PHI 3rd Edition(orginal edition 1994)2005.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):
Note: 1-Low, 2-Medium, 3-High

		/			<u>, , , , , , , , , , , , , , , , , , , </u>	0									
CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	PO.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	3	-	-	-	-	1	-	-	-	-	-	3	-	-
CO2	3	3	2	-	-	-	1	-	-	-	-	-	3	-	-
CO3	2	3	3	-	-	-	2	-	-	-	-	-	3	-	-
CO4	2	3	3	-	-	-	2	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	2	-	-	-	-	-	3	-	-

	CONTROL SYST	EM						
[As per NEP, Outcome Based Edu			(CBCS) S	cheme]				
	SEMESTED VI	r						
Subject Code	SEMESTER-VI 22EC62	CIE Marks	50					
Subject Code	220002		50					
Number of Lecture Hour/Week	3L	SEE Marks	50					
Number of Lecture Hours	ours 40 Exam Hours 03							
	CREDITS-03	I						
 Course Objectives: This course will en. To introduce the components an Learn how to find a mathematical Find the transfer function via Mas Know how to find time response a 5. To learn various methods for a sustainable 	nd their representation of model of electrical, mea ons' rule. and analyze the stability	chanical and electromech of a system from the tran	nsfer func	tion.				
systems	Module -1			Teaching Hours				
INTRODUCTION TO CONTRO classifications, Servomechanics, Dif Systems, Electrical Systems, Analog Ref 1)	ferential Equation Of	Physical Systems: Mec	chanical	08 Hours				
	Module -2							
MODELING A CONTROL SYSTEM Flow graphs.		Block diagram algebra ar	nd Signal	08 Hours				
	Module -3							
TIME RESPONSE ANALYSIS OF step & ramp step response of First orde Time response specifications of second (Text1& Ref 1)	er Systems , Unit step re	esponse of second order s	System,	08 Hours				
<u>```</u>	Module -4							
STABILITY ANALYSIS AND ROC for Stability, Routh stability criterion, concepts, Construction of root loci.(Tex	Introduction to Root L			08 Hours				
	Module -5							
FREQUENCY DOMAIN ANALYSI frequency response, Bode Plots, Nyqui			e and	08 Hours				
Course Outcomes: After studying this CO1- Derive and analyze Mechanical a CO2- Analyze the transfer functions of CO3- Analyze the time response specif different types of input signals. CO4- Develop root locus diagrams and CO5- Assess the stability of control sys Text Books:	and Electrical Systems u block diagram algebra, fication and evaluate ste analyze the system dyr tems in frequency dom	using analogous system. and signal flow graphs f ady state errors and error namics for stability assess ain using the Nyquist and	r constants sment. d Bode plo	s for ots.				
1. J.Nagarath and M.Gopal, — Cor Publishers, Fifth edition-2005, ISBN: 8		mig, new Age Intern	alional (F) Limited,				

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING(1/2/3):

Note:1-Low, 2-Medium, 3-High

СО/РО	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	9.04	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO5	2	3	3	-	-	-	-	-	-	-	-	-	3	-	-

ARM CORTEX-M3 & EMBEDDED SYSTEMS

[As per NEP, Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Scheme] SEMESTER-VI									
Subject Code	22EC631	CIE Marks	50						
Number Lecture Hour/Week	3L	SEE Marks	50						
Number of Lecture Hours	40 Hours	Exam Hours	03						
CREDITS-03									

Course Learning Objectives: This course will enable students to:

- Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- > Develop the hardware software co-design and firmware design approaches.
- > Explain the need of real time operating system for embedded system applications
- Understand the architectural features and instruction set of 32-bit Microcontroller ARM Cortex M3.
- Program ARM Cortex M3 using the various instructions and C language for different applications.

Modules	Teaching Hours
Module -1	
Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Elements of an Embedded System (Block diagram and explanation), Differences between RISC and CISC, Harvard and Von-neumann, Big and Little Endian formats, Memory (ROM and RAM types), Sensors, Actuators, Optocoupler, Communication Interfaces (I2C, SPI, IrDA, Bluetooth, Wi-Fi, Zigbee only)	08 Hours
(Text 1: All the Topics from Ch-1 and Ch-2 (Fig and explanation before 2.1) 2.1.1.6	
to 2.1.1.8, 2.2 to 2.2.2.3, 2.3 to 2.3.2, 2.3.3.3, selected topics of 2.4.1 and 2.4.2 only). Module -2	
Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded Systems-Application and Domain specific, Hardware Software Co-Design and Program Modeling (excluding UML), Embedded firmware design and development (excluding C language). (Text 1: Ch-3, Ch-4 (4.1, 4.2.1 and 4.2.2 only), Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only))	08 Hours
Module -3	
RTOS and The Embedded product development life cycle(EDLC): Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive scheduling techniques, How to choose an RTOS, The Embedded product development life cycle (EDLC): What is EDLC?, Why EDLC?, objectives of EDLC, Different phases of EDLC, EDLC approaches(Modeling the EDLC) (Text 1: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.10 only), ch-15	08 Hours
Module -4	
ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence (Text 2: Ch 1, 2, 3)	08 Hours

Module-5	
ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list	08 Hours
and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS,	
Assembly and C language Programming (Text 2: Ch-4(4.1,4,2,4.3.1 to	
4.3.5,4,3.8,4.4only),Ch-5(5.1,5.2,5.3,5.5only), Ch-10 (10.1,10.2, 10.3, 10.4 only))	
Course outcomes: After studying this course, students will be able to:	
CO1-Indentify the purpose, core of embedded systems and area of applications.	
CO2-Analyze the hardware /software co-design and firmware design approaches.	
CO3-Investigate the need of real time operating system for embedded system applications.	
CO4-Analyze the architectural features of ARM Cortex M3 and apply for embedded syste	m
applications.	
CO5- Apply the knowledge gained for programming ARM Cortex M3 for applications, interface extern	al devices
and I/O with ARM microcontroller.	
Text Book:	
1. Shibu K V, —Introduction to Embedded Systems ^{II} , Tata McGraw Hill Education	
Private Limited, 2nd Edition.	
2. Joseph Yiu, —The Definitive Guide to the ARM Cortex-M3I, 2nd Edition, Newnes,	
(Elsevier), 2010.	
Reference Book:	
4. James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008	8, ISBN:
978-0-471-72180-2.	
5. Yifeng Zhu, "Embedded Systems with Arm Cortex-M Microcontrollers in Assembly I	Language
and C", 2nd E -Man Press LLC ©2015 ISBN:0982692633 9780982692639.	
6. Embedded real time systems by K.V. K. K Prasad, Dreamtech publications, 2003.	

Embedded real time systems by K.V. K. K Prasad, Dreamtech publications, 200.
 Embedded Systems by Rajkamal, 2nd Edition, McGraw hill Publications, 2010.

СО/РО	P0.1	P0.2	P0.3	P0.4	P0.5	PO.6	PO.7	PO.8	PO.9	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	3	-	-	-	-	1	-	-	-	-	-	3	-	-
CO2	3	3	2	-	-	-	1	-	-	-	-	-	3	-	-
CO3	2	3	3	-	-	-	2	-	-	-	-	-	3	-	-
CO4	2	3	3	-	-	-	2	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	2	-	-	-	-	-	3	-	-

	NY MACHINE L			
[As per NEP, Outcome Based Education	on (OBE) and Ch SEMESTER-V	•	stem (CBCS	S) Scheme]
Subject Code	22EC632	CIE Marks	50	
Number Lecture Hour/Week	3L	SEE Marks	50	
Number of Lecture Hours	40	Exam Hours	03	
	CREDITS-0	3	I	
Course Objectives: The objectives of th	e course is to enal	ble students to:		
Work with Arduino and ultra-low-	1	ollers		
Learn the essentials of ML and how				
 Train models to understand audio, Explore Tensor Flow Lite for Micr 			vM I	
 Debug applications and provide sa 		•	y IVIL	
	Module -1			Teaching Hours
Getting up to speed on ML: What	t machine learni	ng actually is, Dee	p learning	nours
convert model, run interface, Evaluate a tool chain, Python and Jupyter noteboor building model, importing dependencies model, Training model, training metrices converting model to tensor flowlite, cor Hello world of TinyML: Building an dependencies, setting up test, getting allopsresolver, defining tensor arena, interface, reading output, running tests Hello world of TinyML: Deploying to Microelectronics, handling output, runn (Chapter 3, 4, 5 & 6 of Text1)	oks, Google co lates, generating dat s, graphing the history application, walk g ready to log d creating interprese, project file strue o Microcontrolle ing example, mak	boratory, tensor flow a, splitting data, def story, improving mod ting through tests, in ata, mapping mode eter, inspecting inpu- cture, walking throu rs , Arduino, sparkfu	v and keras ining basic del, testing, cluding the el, creating it, running igh source.	08 Hours
	Module -2			
 Wake-word detection: Building an a model, all moving parts, walking throprovider, command recognizer, comma application, deploying to microcontrolled Wake-word detection: Training a M model, updating labels, updating comm working, visualizing inputs, understand data, speech commands dataset, tarchitectures. Person detection: Building an app model, all moving parts, walking the detection responder, detecting people Person detection: Training model, printstance, training framework choice, evaluating model, exporting to tensorfl architecture. 	bugh the tests, bas and responder, list ers. odel , Training in hand responder, o ding model archi training dataset, olication , applica prough the tests, deploying to m icking a machine, building dataset,	sicflow, audio provid ening for wake work co lab, using model ther ways to run scr tecture, model outp data augmentation ation architecture, if basic flow, image nicrocontrollers, wr setting google cloud training model, te	der, feature ds, running l, replacing ipts, model ut, training on, model introducing e provider, apping up. id platform ensorboard,	08 Hours

Module -3	
Magic Wand: Building an application, application architecture, introducing model, all	
moving parts, walking through the tests, basic flow, accelerometer handler, gesture	
predictor, output handler, detecting gestures, deploying to microcontrollers.	
Magic Wand: Training model, training in Colab, other ways to run the scripts, model	
working, visualizing input, understanding model architecture, training data, capturing	
data, modifying training scripts, using new model.	
TensorFlow lite for Microcontrollers, tensorflow, tensorflow lite, tensorflow lite for	
microcontrollers, requirements, model interpretation, project generation, building	10 Hours
systems, specializing code, makefiles, writing tests, supporting a new hardware	10 110013
platform, supporting a new IDE, integrating code changes, contributing back to open	
source, supporting new hardware accelerators, understanding file format, porting	
tensorflow lite mobile Ops to micro.	
Designing own TinyML applications, design process, need a microcontroller or larger	
device, understanding possibilities, find similar models to train, look data, wizard of Oz-	
ing, get it working on desktop.	
(Chapter 11, 12, 13 & 14 of Text1)	
Module -4 Optimizing Latency, first make sure it matters, hardware changes, model	
improvements. quantization, product design, code optimizations, optimizing operations,	
contributing back to opensource. Optimizing energy usage, developing intuition,	
typical component power usage, hardware choice, measuring real power usage,	
estimating power usage for model, improving power usage for model, duty cycling,	
cascading design. Optimizing model and binary size , understanding system's limits,	10.11
estimating memory usage, flash usage, RAM usage, ballpark figures for model accuracy	10 Hours
and size on different problems, model choice, reducing size of executables, truly tiny	
models.	
(Chapter 15, 16 & 17 of Text1	
Module -5	
Debugging, accuracy loss between training and deployment, preprocessing differences,	10.11
debugging preprocessing, On-device evaluation, Numerical differences, are the	10 Hours
differences problem, establish a metric, compare against baseline, swap out implementation, mysterious crashes and hangs, desktop debugging, log tracing, shotgun	
debugging, memory corruption, Porting models from tensor flow to tensor flow lite ,	
understand Ops need, look existing Op coverage in tensor flow lite, move preprocessing	
and post processing into application code, implement and optimize Ops, Privacy,	
security and deployment, privacy design document, using a PDD, protecting models,	
moving from a development board to a product	
(Chapter 18, 19 & 20 of Text1)	
Course Outcomes : After studying this course, students will be able to:	
CO1-Make use concepts in Tiny ML.	
CO2-Build an application and deploy to the microcontroller	
CO3-Analyze a Tensor flow lite for microcontroller and Design a Tiny ML application.	
CO4- Experiment with Latency, Energy usage, model and binary size parameter.	
CO5- Analyze accuracy loss between training and deployment, Privacy, security and depl	oyment
Text Books:	
3. Pete warden and Daniel Situnayake, TinyML: Machine Learning with TensorFlow Lit	
Arduino and UltraLow-Power Microcontrollers, O'Reilly Media, 1st edition, 2020. IS	BN-10:
1492052043.	

СО/РО	P0.1	P0.2	P0.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	-	-	-	-	-	-		-	-	-	1	-	2	-
CO2	3	-	-	-	-	-	-	-	-	-	-	2	-	2	-
CO3	1	1	3	-	-	-	-	-	-	-	-	2	-	3	-
CO4	3	-	-	-	-	-	-	-	-	-	-	2	-	3	-
CO5	3	-	-	-	-	-	-	-	-	-	-	2	-	3	-

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3): Note:1-Low, 2-Medium, 3-High

PROGR	AMMING USING	G PYTHON	
[As per NEP, Outcome Based Education	on (OBE) and Choi	ice Based Credit Sys	tem (CBCS) Scheme]
	SEMESTER – V		
Subject Code	22EC641	IA Marks	50
Number of Lecture Hours/Week	3L	Exam Marks	50
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03	8	
Course objectives: This course will enable			
Learn Syntax and Semantics and creat Handle Strings and Eiles in Python	e Functions in Pyt	non.	
 Handle Strings and Files in Python. Understand Lists, Dictionaries and Re 	aulor overagions	n Duthon	
 Implement Object Oriented Programm 			
 Build Web Services and introduction 			ng inPython
Module		atabase 110grammi	TeachingHours
		•40	č
The way of the program, Variables, expres Functions, conditionals and recursions	sions and statemer	nts,	8 Hours
	Module – 2		
Iteration, Strings, lists			8 Hours
	Module - 3		•
Dictionaries, Tuples, Files, Regular Expres	ssions		8 Hours
	Module – 4		
Classes and objects, Classes and functions,		ods	8 Hours
	Module – 5	1001	0.11
Networked programs, Using Web Services,	-	and SQL	8 Hours
Course outcomes: The students should be			<u>flame</u> a sector 1 a se d
CO1- Understand Python syntax and seman Functions.	ntics, and be fluent	in the use of Python	a flow control and
CO2- Develop, run, and manipulate Pythor	n programs using (Core data structures l	ike Lists.
Dictionaries, and string handling met			
CO3- Develop, run, and manipulate Pythor		ile Operations and s	earching patterns
using regular expressions.		-	• •
CO4- Interpret the concepts of object-orien			
CO5- Implement exemplary applications re	elated to Network I	Programming, Web	Services, and Databases
in Python.			
Text Books:			<u> </u>
	on: How to		1
2 nd Edition,GreenTeaPress,2015.(http://gree 3,5,7,8,10-12,14-17) (Download pdf files fi			on2.pdf)(Chapters 1-
2.Charles R. Severance, "Python for H			Python 3" 1 st Edition
		Platform, 20	
chuck.com/pythonlearn/EN_us/pythonlearn	U	,	
Reference Books:			
1. Charles Dierbach, "Introduction to Con ISBN-13: 978-8126556014	-		
2. Mark Lutz, "Programming Python", 4 th			
3. Wesley J Chun, "Core Python Applicat	ions Programming	", 3 ¹⁴ Edition, Pearso	on Education India, 2015.
ISBN-13: 978-9332555365			

		1-L0		viediu	m, 3-1							7	_	7	33
CO/PO	P0.1	PO.2	PO.3	P0.4	P0.5	PO.6	P0.7	PO.8	PO.9	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	2	-	-	-	-	-	-	-	3	-	-
CO2	3	3	3	-	2	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	-	2	-	-	-	-	-	-	-	3	-	-
CO4	3	2	2	-	2	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	3	-	-	-	-	-	-	-	3	-	-

IOT	& ITS APPLICATI	ONS	
[As per NEP, Outcome Based Education			CS) Scheme]
	SEMESTER-VI		
Subject Code	22EC642	CIE Marks	50
Number Lecture Hour/Week	3L	SEE Marks	50
Number of Lecture Hours	40	Exam Hours	03
	CREDITS-03		
Course Objectives: This course will enable s			
 Understand the overview of IoT, Physica Studying the similarity between M2M & Understand IoT platform design methodo Know the IoT physical devices and Pytho Understand the role of IoT in various dom 	I and Logical Design IoT and its system n ology. on programming con- mains of applications	nanagement. cept.	
Мо	dule -1		Teaching Hours
Introduction to Internet of Things			liouis
Introduction: Definition, and Characteristics of Physical Design of IoT: Things in IoT, IoT Pr Logical Design of IoT: IoT Functional communication APIs IoT Enabling Technologies: Wireless sensor communication protocol, Embedded systems IoT levels and Deployment Templates: IoT le	rotocols I Blocks, IoT Con r networks, Cloud con	mputing, Big data analy	o nouis
	dule -2		
IoT and M2M: M2M, Difference between Id network function virtualization IoT System Management with NETCON SNMP, Network operator requirements, NET NETCONF-YANG. (Chapter 3 & 4)	F-YANG: Need for	· IoT System Managem	ent, 8 Hours
Мо	dule -3		
IoT Platforms Design Methodology: Intro Requirements Specification, Process Specific Model specification, service specifications specifications, operational view specific Application Development, Motivation for Usi	cation, Domain mode s, IoT level Speci ations, Device and ing Python(chapter-5	el Specification, Informa fications, Functional v d component Integrat	tion iew 8 Hours
	dule -4		
IoT Systems- Logical Design using Pytho Types and Data Structures, Control Flow, Python Packages.			
IoT Physical Devices & Endpoints: Exemplary Device: Raspberry Pi, About the Interfaces. Programming Raspberry Pi with P			
	dule -5		
Domain Specific IoTs and its Applications: Retail, logistics, Agriculture, Industry, Health IoT applications: Smart lighting, smart par monitoring, forest fire detection, smart irrigat	and life style and life style rking, whether moni		8 Hours

Course outcomes: After studying this course, students will be able to:

- CO1- Gain a foundational understanding of IoT concepts, architecture, and analyze the data collection and processing mechanisms.
- CO2- Analyze IoT communication protocols and application layer protocols, focusing on data collection, storage, and computing using cloud platforms.
- CO3- Identify security concerns and analyze the vulnerabilities encountered in IoT applications.
- CO4 Analyze the real-time applications of IoT in various scenarios.

CO5- Apply Python programming skills to develop IoT applications.

Text Books:

1. Arshdeep Bhaga and Vijay Madisetti, "Internet of Things – A Hands-on Approach 2014

Reference Book:

- 5. Raj Kamal, "Internet of Things- Architecture and Design Principles", McGraw Hill Education.
- 6. Qusay F. Hassan, Internet of Things A to Z Technologies and Applications, IEEE press, WILEY, ISBN:978-1-111-945674-2.

СО/РО	P0.1	PO.2	PO.3	P0.4	P0.5	PO.6	P0.7	PO.8	PO.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	3	•	I	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-

I [As per NEP, Outcome Based Educa	EMBEDDED SYSTE		məl
[As per NEF, Outcome Based Educa	SEMESTER-VI	Dased Cledit System (CDCS Sche	
Course Code	22EC651	CIE Marks	50
Number of Lecture Hours/Week	4L	SEE Marks	50
Total Number of Lecture Hours	50	Exam Hours	03hrs
 Course Learning Objectives: This course Learning Objectives: This course understand the basic hardware command attributes of an embedded system Understand typical Embedded system Develop the hardware software co-de Explain the need of real time operation to the integration to the integration. 	ponents and their sel a. b. with its components besign and firmware de ang system for embed	lection method based of the class. esign approaches. ded system applications	
Understand the integration, testing of Life cycle.	Embedded nafdware		development
Modu	ıle 1		Teaching Hours
Introduction To Embedded Systems: embedded systems based on generation characteristics of embedded systems and q system-Application specific and Domain sp (Text 1:Chapter-1,chapter-3 and chapt	and complexity, Pu uality attributes of an pecific. er-4)	rpose of embedded system,	10Hrs
	lule 2		
Typical Embedded System: Core of specific processors, ASICs, PLDs, COTs; of interface, memory shadowing, memory I/O components: seven segment LED, communication interfaces, External comm brownout protection circuit, oscillator circuit (Text 1:Chapter-2)	Memory-ROM, RAM y selection for embedor relay, piezo buzzer, nunication interfaces, cuit real time clock, wa	I, memory according to the type ded systems, Sensors, actuators, push button switch, Onboard other sub-systems: reset circuit,	
Mod	lule 3		
Hardware Software Co-Design and Pa hardware software co-design and Comp Embedded Firmware Design And Dev super loop based approach, operating syst languages-assembly language based dev (Text1:Chapter 7.1,7.2,chapter 9.1 and	utational models in E velopment: Embedded em based approach; en velopment, high level d 9.2)	Embedded design. d firmware design approaches- mbedded firmware development	10 Hrs
Mod	lule 4		
RTOS Based Embedded System Des systems, tasks, process and threads, multip emptive and pre-emptive scheduling; tas Remote Procedure Call and Sockets Synchronization Issues, Task Synchro RTOS.(Text1:Chapter 10)	rocessing and multitas k communication-sha , Task Synchroniz	sking, task scheduling: non-pre- red memory, message passing, ation: Task Communication/	

Module 5	1
Integration and testing of Embedded hardware and firmware.	10 Hrs
Embedded system Development Environment – Block diagram (excluding Keil),	,
Disassembler/decompiler, simulator, emulator and debugging techniques.	
The Embedded product development life cycle (EDLC): What is EDLC?, Why EDLC?,	,
objectives of EDLC, Different phases of EDLC, EDLC approaches (Modeling the EDLC))
(Chapter 12,13,15)	
Course outcomes: After studying this course, students will be able to:	·
CO1-Describe the differences between the general computing system and the embedded system, a	llso recognize
the classification of embedded systems and its applications	
CO2-Apply the knowledge of Microcontrollers to understand the basics of typical embedded sy	stem and its
design components.	
CO3-Analyze the typical embedded system components.	
CO4-Develop the hardware /software co-design and firmware design approaches.	
CO5-Investigate the process of embedded product development life cycle.	
Text Book:	
1. Shibu K V, —Introduction to Embedded Systems, Tata McGraw Hill Education	
Private Limited, 2nd Edition.	
Reference Books:	-
1. James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008, J	SBN: 978-0-
471-72180-2.	
2. Yifeng Zhu, "Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Lan	guage and
C", 2nd E -Man Press LLC ©2015 ISBN:0982692633 9780982692639.	
3. Embedded real time systems by K.V. K. K Prasad, Dreamtech publications, 2003.	

- Embedded real time systems by K.V. K. K Prasad, Dreamtech publications, 2003.
 Embedded Systems by Rajkamal, 2nd Edition, McGraw hill Publications, 2010

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING(1/2/3):
Note:1-Low, 2-Medium, 3-High

Totell Low, 2 meaning right															
CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	9.0Y	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	-	-	-		-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-

INTRODUCTION TO UAV ELECTRONICS [As per NEP, Outcome based Education (OBE), and Choice Based Credit System (CBCS) Scheme] SEMESTER-VI

Course Code	22EC652	CIE Marks	50						
Number of Lecture Hour/Week	4L	SEE Marks	50						
Number of Lecture Hours	50	Exam Hours	03						
CREDITS-04									
Course Objectives: Students will be taught to:									

- > To introduce the basic concepts of comparator, converter and interfacing circuits.
- > To give exposure on the construction and working of digital circuits.
- > To get introduce about the basics of signal generators.
- > To make familiarize with the microprocessor and its applications.
- > To make familiarize with the microprocessor and its applications.

Module -1	Teaching Hours
Linear IC's: OP-AMP specifications, applications, voltage comparator, A/D and D/A converter, sample and hold circuit, timer, VCO, PLL, interfacing circuits.	10 Hours
Module -2	·
Digital Systems: Review of TTL, ECL, CMOS- Logic gates, Flip Flops, Shift Register, Counter, Multiplexer, Demultiplexer / Decoder, Encoder, Adder, Arithmetic functions, analysis and design of clocked sequential circuits, Asynchronous sequential circuits.	10 Hours
Module -3	
Signal Generators: Monostable, Astable and Bistable muti-vibrators. Schmitt Trigger. Conditions for oscillation, RC phase shift oscillator, Wien bridge oscillator, Crystal oscillator. LC oscillators. Relaxation oscillators.	10 Hours
Module -4	
Microprocessor Based Systems: The 8085 microprocessor, interfacing with Alpha numeric displays, LCD panels, Stepper motor controller, Analog interfacing and industrial control.	10 Hours
Module -5	•
Microcontroller Based Systems: 8031/8051 Micro controllers:- Architecture- Assembly language Programming-Timer and Counter Programming- External Memory interfacing - D/A and A/D conversions - Multiple Interrupts . Introduction to 16 bit Microcontrollers.	10 Hours
Course Outcomes: After studying this course, students will be able to CO1-The Students will be able to understand and apply the basic concepts of Electronic UAV.	Systems for
CO2-The students will be able to get exposure in the construction and analyze the workin circuits.	g of digital
CO3-The students will be able to understand/ analyze/design various signal generators us avionics.	ed in the
CO4-The students will get familiarize with microprocessors/ microcontrollers and will be deploy these skills effectively in designing avionics subsystems.	able to
CO5-The students will develop ability to conduct independent study and investigations o microprocessors/ microcontrollers based designs.	n

Text Books:

- 1. Jacob Millman, Christos C Halkias, SatyabrataJit, Millman's, "Electronic Devices and Circuits", Second Edition, Tata McGraw Hill,New Delhi, 2007.
- 2. Donald P Leach, Albert Paul Malvino, GoutamSaha, "Digital Principles and Applications", 6th Edition Tata McGraw Hill, New Delhi, 2006.
- 3. Gayakwad, Ramakant A., "Op-Amps And Linear Integrated Circuits", Prentice Hall/ Pearson Higher Education, New Delhi, 1999.

Reference Books / Web links:

- 1. John Crisp, "Inroduction to Microprocessor and Microcontroller", Newnes Publication, London. 2004.
- 2. William Kleitz, "Microprocessor and Microcontroller Fundamentals: The 8085 and 8051 Hardware and Software", Prentice Hall Inc, New York, 1997.

СО/РО	P0.1	PO.2	P0.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	-	-	-		-	-	-	-	3	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-

VLSI CIRCUITS LABORATORY

[As per NEP, Outcome Based Education (OBE), and Choice Based Credit System (CBCS)] SEMESTER-VI

Subject Code	22ECL66	CIE Marks	50	
Number of Lecture Hour/Week	2P	SEE Marks	50	
Total Number of Hours	24	Exam Hours	03	
	CREDITS-	01		

Course Objectives: This course will enable students to:

- Explore the CAD tool and understand the flow of the Full Custom IC design cycle.
- ▶ Learn DRC, LVS and Parasitic Extraction of the various designs.
- Design and simulate the various basic CMOS analog circuits and use them in higher circuitslike data converters using design abstraction concepts.
- Design and simulate the various basic CMOS digital circuits and use them in higher circuitslike adders and shift registers using design abstraction concepts.

List of Experiments:

Following Experiments to be done using MATLAB / SCILAB / OCTAVE or equivalent:

PART A

ASIC DIGITAL DESIGN

- 1. Write Verilog Code for the following circuits and their Test Bench for verification, observe the waveform and synthesize the code with technological library with given constraints*. Do the initial timing verification with gate level simulation.
 - i. CMOS flip flop
 - ii. Transmission Gate
 - iii. Edge triggered D Flip flop
 - iv. 4 bit Ripple Carry Adder, Carry Look Ahead Adder
 - v. Serial Adder
 - vi. 32 bit ALU

vii.Ripple Counter using T- Flop Flop

viii.4-bit counter [Synchronous and Asynchronous counter]

PART B ANALOG DESIGN

- 1. Design an Inverter with given specifications^{**}, completing the design flow mentioned below:
 - a. Draw the schematic and verify the following

i) DC Analysis

- ii) Transient Analysis
- b. Draw the Layout and verify the DRC, ERC
- c. Check for LVS
- d. Extract RC and back annotate the same and verify the Design
- e. Verify & Optimize for Time, Power and Area to the given constraint*
- 2. Design the (i) Common source and Common Drain amplifier and
 - (ii) A Single Stage differential amplifier, with give specifications**, completing the design flow mentioned below:
 - a. Draw the schematic and verify the following
 - i) DC Analysis
 - ii) AC Analysis
 - iii) Transient Analysis

Course Outcomes: After studying this course, the students will be able to:

- CO1-Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment.
- CO2-Utilize laboratory instruments/simulation tools to build and test experiments.
- CO3-Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.
- CO4-Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs.
- CO5-Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):

CO/PO	P0.1	PO.2	PO.3	PO.4	PO.5	PO.6	PO.7	PO.8	9.0Y	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

Note: 1-Low, 2-Medium, 3-High

EMBEDDED SYSTEM LABORATORY

	SEMESTER-V		50
Subject Code	22ECL671	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Total Number of Hours	24	Exam Hours	03
	CREDITS-01		
Course Objectives: This course will e	nable students to:		
> Understand the instruction set of	f ARM Cortex M3, a	32 bit microcontroller	and the software
tool required for programming i			
 Program ARM Cortex M3 using applications. 	the various instruction	ons in assembly level l	anguage for different
 Interface external devices and I/ 	O with ARM Cortex	M3.	
Develop C language programs a			pplications.
	List of Experime		
PART-A: Conduct the following Study	v experiments to learn	ALP using ARM	
Cortex M3 Registers using an Evaluati	on board and the requi	ired software tool.	
1. ALP to multiply two 16 bit binary n			
2. ALP to find the sum of first 10 integ	ger numbers.		
PART-B: Conduct the following ex			aluation board using
evaluation version of Embedded 'C' $\&$		ompiler.	
1. Display —Hello World message us	ing Internal UART.		
2. Interface and Control a DC Motor.			
3. Interface a Stepper motor and rotate			
4. Interface a DAC and generate Trian			
5. Interface a 4x4 keyboard and display			1
6. Using the Internal PWM module of			uty cycle.
7. Demonstrate the use of an external i			lalari in hatavaan
8. Display the Hex digits 0 to F on a 7-			ielay in between.
9. Interface a simple Switch and displa	• •	•	
10. Measure Ambient temperature usir Course Outcomes: After studying this	•		
			wlating the
CO1-Develop a strong foundation in a experiment.	pprying incorducat con	icepts by designing /sin	iuraung me
CO2-Utilize laboratory instruments/sir	nulation tools to build	and test experiments	
CO3- Analyse experimental data/simu		-	eaningful conclusions
CO4-Learn to work effectively in team			
circuits/programs.			••••••••••••••••••••••••••••••••••••••
CO5-Manage time effectively in a sim	ulation/laboratory envi	ironment, palancing ext	perimental work, data

CO5-Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

CO/PO	P0.1	P0.2	P0.3	P0.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3): Note: 1-Low, 2-Medium, 3-High

MACHINE LEARNING LABORATORY

	SEMESTER-VI		50
Subject Code	22ECL672	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Total Number of Hours	24	Exam Hours	03
	CREDITS-01		
Course Objectives: This course will en	able students to:		
Understand the Integrated developr	nent environments and o	deploying the code to s	specific
microcontrollers			
Analyse the code written in platform			
Understand microcontrollers like A	_	Edge and ST Microele	ectronics
STM32F746G discovery kit for var	rious applications		
Design Tiny ML applications			
 Design model architecture, train, co 			
	List of Experiment	s:	
1 Devilden en altraction and devilers it to			c
 Build an application and deploy it to Build an application for wake word 			L
3. Build an application for person detection			
4. Build an application for Magic Wand			
5. For a given model optimize latency	a and deploy it to a mich		
6. Estimate, measure and improve the p	ower usage for a model		
7. Optimize the given model in terms of			
8. Port a model from tensorflow to tens			
Course Outcomes: After studying this of	course, the students will	be able to:	
CO1- Develop a strong foundation in ap			lating the experimen
CO2-Utilize laboratory instruments/sime	ulation tools to build and	d test experiments.	-
CO3-Analyse experimental data/simulat			
CO4-Learn to work effectively in teams	while identifying and c	orrecting faults in elec	tronic
circuits/programs.			
CO5-Manage time effectively in a simul	lation/laboratory enviror	nment, balancing expen	rimental work, data

collection, and report writing within specified deadlines.

CO/PO	P0.1	PO.2	P0.3	PO.4	P0.5	PO.6	P0.7	PO.8	9.0Y	PO.10	P0.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

PROGRAMMING USING PYTHON LABORATORY

Subject Code	SEMESTER-V 22ECL681	CIE Marks	50
Number of Lecture Hour/Week	2P	SEE Marks	50
Total Number of Hours	24	Exam Hours	03
	CREDITS-01		
Course Objectives: This course will e			
Learn Syntax and Semantics and		thon.	
Handle Strings and Files in Pytho	n.		
 Understand Lists, Dictionaries and 	d Regular expressions	in Python.	
Implement Object Oriented Progr			
Build Web Services and introduce	tion to Network and I	Database Programming	inPython.
	List of Experime		
.write a program to demonstrate differ	• 1	in python(script.py)	
2. Create a list and perform the follow	0		
1) insert() 2) remove() 3) apper			
3.write a program to perform different	-	•	
4. write a program to demonstrate work	e 1 1 .		have always stall a
5. write a program to create, concatenate		a accessing sub-string f	rom given string
6. Create a dictionary and apply the for 1) Print the dictionary items 2)	-	t() A)change values 5) u	sa lan()
7. Write a python program to find larg	, 0		
8. Write a python program to check w			
9. Program to convert temperature in			
10.write a python program to construct		n, using a nested for loop	p
11.write a python script that prints print			
12.write a python program to find the	factorial of a number u	using recursion	
13.Write a program to do the following			
i. Create a empty dictionary wi	th dict() method		
ii. Add elements one at a time			
iii. Update existing key"s value			
iv. Access an element using a k	•	nod	
v. Deleting a key value using d		awing matheday	
 Write a program to create a diction pop() method 	ary and apply the lone	owing methods:	
ii. popitem() method			
iii. clear() method			
15. Given a dictionary, write a program	n to find the sum of al	l items in the dictionary	
16. Write a program to merge two dict		-	
17.write a program that input a text file alphabetical order.			ords in the file in
18.write a python class to convert an in	nteger to Roman nume	eral.	
19.write a python class to implement p	-		
20 write a python class to reverse a str			

20.write a python class to reverse a string word by word.

Course Outcomes: After studying this course, the students will be able to:

CO1-Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment.

CO2-Utilize laboratory instruments/simulation tools to build and test experiments.

CO3-Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions. CO4-Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs.

CO5-Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

IOT & ITS APPLICATION LABORATORY

[As per NEP, Outcome based Education (OBE), and Choice Based Credit System (CBCS) Scheme] **SEMESTER-VI** 22ECL682 **CIE Marks** 50 Subject Code Number of Lecture Hour/Week $2\mathbf{P}$ SEE Marks 50 Total Number of Hours 24 **Exam Hours** 03 **CREDITS-01** Course Objectives: This course will enable students to: Understand the use of Respberry Pi. \geq

- Study the Interfacing of Gas, Soil Moisture, Ultrasonic sensor, Temperature sensor, and Humidity sensor to the Respiberry Pi.
- > Understand the use of Things speaks or xtrans cloud storage.
- Study the design of IoT application.

List of Experiments:

Following Experiments to be done using Python Application software PART-A

- 1) Getting started with raspberry Pi 3B+- down loading OS, connecting to PC monitor and initial setup.
- Study of various sensors- i) GAS Sensor ii) Soil Moisture Sensor iii) Light Sensor iv) Ultrasonic Distance Sensor v) Temperature and Humidity Sensor.
- 3) Interfacing GAS sensor to the Respberry pi and test the working of GAS sensor and make the buzzer on.
- 4) Interfacing Soil moisture sensor to the Respberry pi and test the working of soil moisture sensor and send the data to cloud.
- 5) Interfacing light sensor to the Respberry pi and test the working of light sensor and send the data to cloud.
- 6) Interfacing Ultrasonic distance to the Respberry pi and test the working of ultrasonic distance senor.
- 7) Interfacing Temperature & Humidity sensor to the Respberry pi and test the working of Temperature & Humidity sensor.

PART-B

- 1) Live weather broadcasting using DHT11 and Things speak cloud/xtrans cloud.
- 2) Smart gas leakage email alerts using Things speak or xtrans alerts.
- 3) Weather display system using DHT11 and LCD display.
- 4) Object distance display using 7-segment display and Ultrasonic sensor.
- 5) Read the sensor data when specified key is pressed.
- **Course Outcomes:** After studying this course, the students will be able to:

CO1- Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment. CO2- Utilize laboratory instruments/simulation tools to build and test experiments.

CO3- Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.

CO4-Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs. CO5- Manage time effectively in a simulation/laboratory environment, balancing experimental work, data

collection, and report writing within specified deadlines.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3): Note: 1-Low, 2-Medium, 3-High

CO/PO	P0.1	PO.2	PO.3	P0.4	PO.5	PO.6	PO.7	PO.8	PO.9	PO.10	PO.11	PO.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

	PROJECT	·VI							
[As per NEP, Outcome Based Educa	, ,	•	tem (CBCS) Scheme]						
	SEMESTER	-VI							
Subject Code	22PRJ69	CIE Marks	50						
Number Lecture Hour/Week	2P	SEE Marks	50						
Total Number of Lecture Hours	24	Exam Hours	03						
	CREDITS	01							
Course Objectives: Students will be	taught to:								
Get exposure about the electronics	s hardware and va	rious software tools.							
Design the working model of the operation	open ended proble	em.							
Understand concepts of Packaging									
Understand the latest technology t	rends in the PCB	design.							
 Prepare technical documentation of 	of the project.								
STUDENTS WILL BE GIVEN A O	PEN ENDED PH	ROBLEM OF THE SO	CIETY AND ASKED						
TO SOLVE BY DESIGNING AND	IMPLEMENTIN	G THE SYSTEM IN TE	LAM.						
Course outcomes: After studying this	s course, students	will be able to:							
CO1-Apply the knowledge of electro	nics hardware an	d software components	to solve the real time						
problems of the society.									
CO2-Analyze the various existing sol	utions available t	o solve the real time pro	oblem and propose the						
best solution.									
CO3-Design and implement the system	m to solve the rea	l time problem of the so	ciety.						
CO4-Conduct investigations on the o	utput and prepare	e the technical documen	tation of the designed						
system in a team.			C C						

CO5-Use the modern tool available like advanced hardware and software tools.

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):

Note: 1-Low, 2-Medium, 3-High

СО/РО	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	PO.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	-	-	2	2	-	-	3	3	-	3	-	3	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	-	3	-
CO3	3	3	3	2	3	2	2	-	3	3	2	3	-	3	-
CO4	3	3	3	2	-	-	-	3	3	3	3	3	-	3	-
CO5	-	-	-	-	3	-	-	3	3	3	3	3	-	3	-

PRO	DFESSIONAL ET	THICS							
[As per NEP, Outcome Based Educatio			n (CBCS)	Scheme]					
	SEMESTER-V								
Subject Code	22HSM610	CIE Marks	50						
Number of Lecture Hour/Week	2L	SEE Marks	50						
Total Number of Lecture Hours	20	Exam Hours	03						
	CREDITS-01								
Course Objectives:	CREDI15-01								
 To enable the students to create an aware To instill Moral and Social Values and Local Values 									
Module -1									
HUMAN VALUES									
Morals, values and Ethics - Integrity - Work	ethic – Service le	earning - Civic virtue -	Respect						
for others - Living peacefully - Caring - S	Sharing – Honest	y – Courage – Valuin	g time –	04 Hours					
Cooperation - Commitment - Empathy -	Self confidence	– Character – Spiri	tuality –	04 Hours					
Introduction to Yoga and meditation for professional excellence and stress management									
5 1									
	dule -2								
ENGINEERING ETHICS									
Senses of 'Engineering Ethics' - Variety of n	noral issues – Typ	bes of inquiry – Moral d	lilemmas						
- Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy -									
Models of professional roles - Theories ab	out right action	- Self-interest - Cust	oms and	04 Hours					
Religion – Uses of Ethical Theories									
Ma	odule -3								
ENGINEERING AS SOCIAL EXPERIME	NTATION								
Engineering as Experimentation – Engineers	as responsible Exp	perimenters - Codes of	Ethics –	04 Hours					
A Balanced Outlook on Law.									
	dule -4			1					
SAFETY, RESPONSIBILITIES AND RIG		"	D' 1						
Safety and Risk – Assessment of Safety and I				04 11					
Respect for Authority – Collective Bargain Occupational Crime – Professional Rights –	0	5		04 Hours					
(IPR) – Discrimination	Employee Right	s – Interfectuar Propert	y Rights						
	dule -5								
GLOBAL ISSUES	uult -J								
Multinational Corporations – Environmen	ntal Ethics – C	Computer Ethics –	Weapons						
Development – Engineers as Managers – Con		-	-	04 Hours					
and Advisors – Moral Leadership –Code of Co									
Course Outcomes: At the end of the course, t									
CO1-Understand the human values required to									
CO2-Apply ethics in society, discuss the ethic	-	•							
CO3-Realize the responsibilities and rights of	-	-							
CO4-Understand the role and responsibility of	-		society.						
CO5-Understand the global issues related to p	roduct developme	nt.							

Text Books:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 4. Edmund G Seebauer and Robert L Barry, "Fundametals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi 2013.
- 6. World Community Service Centre, "Value Education", Vethathiri publications, Erode, 2011

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING (1/2/3):

CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	PO.7	PO.8	9.0Y	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	-	-	-	-	-	3	2	2	2	3	2	3	-	-	3
CO2	-	-	-	-	-	3	2	3	3	3	2	3	-	-	3
CO3	-	-	-	-	-	2	2	3	3	3	3	3	-	-	3
CO4	-	-	-	-	-	3	2	3	3	3	3	3	-	-	3
CO5	-	-	-	-	-	3	3	3	3	3	3	3	-	-	3

Note: 1-Low, 2-Medium, 3-High

ANTENNAS DESIGN SIMULATION											
[As per NEP, Outcome based Education (OBE), and Choice Based Credit System (CBCS) Scheme]											
SEMESTER-VI											
Subject Code	22AEC611A	CIE Marks	50								
Number of Lecture Hour/Week	2P	SEE Marks	50								
Total Number of Hours	24	Exam Hours	03								
	CREDITS-01										

Course Objectives: This course will enable students to:

- Students will be able to understand the working principle of different antennas
- Students will be able to microstrip antennas using 3DEM of Mentorgraphics.
- Students will be able to understand the different feeding techniques
- Students will be able to design, Microstrip antennas for various wireless applications

List of Experiments:

- 1. Design and simulation of rectangular microstrip patch antenna with a particular operating frequency, dielectric constant and substrate thickness
- 2. Design of microstrip patch antenna using microstrip line feeding technique
- 3. Design of microstrip patch antenna using a coaxial feeding technique
- 4. Design and simulation of dual-band patch antenna
- 5. Design and simulation of compact patch antenna
- 6. Design and simulation of wide band patch antenna
- 7. Design and simulation of compact and wide band patch antenna
- 8. Design and simulation of circular polarized patch antenna

Course Outcomes: After studying this course, the students will be able to:

CO1-Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment. CO2- Utilize laboratory instruments/simulation tools to build and test experiments.

- CO3-Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.
- CO4-Learn to work effectively in teams while identifying and correcting faults in electronic

circuits/programs.

CO5- Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

Text book:

1. C A Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, 2nd. Edn.

CO/PO	P0.1	PO.2	PO.3	PO.4	PO.5	PO.6	P0.7	PO.8	9.0Y	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	I	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	I	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	I	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-

DESIGN OF VLSI CIRCUIT USING LT SPICE LABORATORY

[As per NEP, Outcome based Education (OBE), and Choice Based Credit System (CBCS) Scheme] SEMESTER-IV

Subject Code	22AEC610B	CIE Marks	50								
Number of Lecture Hour/Week	2P	SEE Marks	50								
Total Number of Hours	24	Exam Hours	03								
CREDITS-01											

Course Objectives: This course will enable students to:

- > To provide practical exposure on designing, setting up, executing and debugging various electronic circuits.
- Draw the schematic diagram some digital circuits like few combinational and sequential circuits and verify their functionality.
- > Draw the schematic diagram some analog circuits and verify their functionality.
- > Use open source simulation software to analyze the circuits.

List of Experiments:

Design Analyze and simulate using LT-SPICE

- 1. Inverter
- 2. NAND Gate
- 3. NOR Gate
- 4. 2:1 MUX
- 5. RS-Flip flop
- 6. D-Flip flop
- 7. T- Flip flop
- 8. Half adder
- 9. Common source with resistive load
- 10. Ring oscillator

Course Outcomes: After studying this course, the students will be able to:

- CO1-Develop a strong foundation in applying theoretical concepts by designing /simulating the experiment.
- CO2-Utilize laboratory instruments/simulation tools to build and test experiments.
- CO3-Analyse experimental data/simulation results and interpret findings to draw meaningful conclusions.
- CO4-Learn to work effectively in teams while identifying and correcting faults in electronic circuits/programs.

CO5-Manage time effectively in a simulation/laboratory environment, balancing experimental work, data collection, and report writing within specified deadlines.

COURSI	COURSE OUTCOME AND REVISED BLOOM'S TAXONOMY LEVEL MAPPING												
COURSE	Remember	Understand	Apply	Analyze	Evaluate	Create							
OUTCOME	L1	L2	L3	L4	L5	L6							
CO1	Y	Y	Y	Ν	Ν	Ν							
CO2	Y	Y	Y	Ν	Ν	Y							
CO3	Y	Y	Ν	Y	Ν	Ν							
CO4	Y	Y	N	N	Ν	N							
CO5	Y	Y	N	N	Ν	N							

				,	8	r									
CO/PO	P0.1	PO.2	PO.3	PO.4	P0.5	PO.6	P0.7	PO.8	P0.9	PO.10	P0.11	P0.12	PSO.1	PSO.2	PSO.3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	2	3	1	-	3	-	-	-	-	-	-	-	-	3	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	2	3	2	-	-	-	-	3	3	2	-	-	-	3	-
CO5	2	2	2	-	-	-	-	3	-	3	3	-	-	3	-